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HealthFlow: A Self-Evolving AI Agent with Meta Planning for
Autonomous Healthcare Research

Anonymous Author(s)

Abstract
The proliferation of scientific knowledge on the World Wide Web
presents a grand challenge: transforming this passive repository
into an active engine for discovery, especially in high-stakes do-
mains like healthcare. Current AI agents, however, are constrained
by static, predefined strategies, limiting their ability to navigate
the complex, evolving information ecosystem of the Web. This
paper introduces HealthFlow, a self-evolving AI agent that over-
comes this limitation through a novel meta-level evolution mech-
anism. HealthFlow autonomously refines its high-level problem-
solving policies by distilling procedural successes and failures into
a durable, structured knowledge base. This enables it to learn not
just how to use tools, but how to strategize. To anchor our re-
search and provide a community resource, we introduce EHRFlow-
Bench, a new benchmark featuring complex health data analy-
sis tasks systematically derived from peer-reviewed research on
the Web. Our experiments demonstrate that HealthFlow’s self-
evolving approach significantly outperforms state-of-the-art agent
frameworks. This work contributes to the WWW community by
offering a new paradigm for intelligent systems that can learn
to operationalize the procedural knowledge embedded in Web-
based scientific content, marking a critical step toward more au-
tonomous and effective AI for healthcare scientific discovery. We
have open-sourced all code and data on the anonymous project
website: https://healthflow-agent.netlify.app/.

CCS Concepts
•Computingmethodologies→Multi-agent systems; Planning
with abstraction and generalization; • Applied computing →
Health informatics.

Keywords
large language model agent, multi-agent system, self-evolving, AI
for healthcare

1 Introduction
The World Wide Web (WWW) has evolved into an indispensable
infrastructure for scientific discovery, hosting a vast and rapidly
expanding corpus of research articles, datasets, and knowledge
bases [24, 34]. A central challenge for the WWW community is
developing intelligent systems that can navigate this complex infor-
mation ecosystem to accelerate research, particularly in high-stakes
domains like healthcare. With the advent of Large Language Mod-
els (LLMs), a new paradigm of AI-driven scientific discovery has
emerged, where autonomous agents are poised to revolutionize re-
search workflows [4, 7, 9, 16, 41]. These agents promise to accelerate
breakthroughs by automating complex data analysis, from hypothe-
sis generation to navigating the vast, heterogeneous data landscapes
of the Web and Electronic Health Records (EHRs) [11, 20, 37, 51].
By orchestrating sophisticated analytical pipelines, they offer the

potential to uncover novel clinical insights at an unprecedented
scale and pace [13, 17].

However, the capabilities of current AI agents are often limited
because their high-level strategic frameworks are static and pre-
defined. This is particularly detrimental in healthcare research, a
domain characterized by open-ended problems, noisy data, and
the need to dynamically adapt plans based on intermediate find-
ings [17]. Existing agents can learn to refine the usage of a specific
tool [20, 30] or improve a reasoning template for a sub-problem [51],
but they operate within a fixed cognitive architecture. The over-
arching strategy that dictates how to decompose a new problem,
orchestrate a multi-step workflow, and revise a plan remains hard-
coded by human engineers and is outside the agent’s learning scope.
This can impose a significant limit on their autonomy; an agent
can become highly efficient at executing a brittle or suboptimal
strategy, but it cannot learn to devise a better one. This reliance on
hand-crafted priors is contrary to a core lesson from AI’s history:
the consistent superiority of learned, general mechanisms over
fixed, engineered solutions [40].

To address this limitation, we propose HealthFlow, an AI agent
framework driven by meta-level strategic planning, learning, and
self-evolution. HealthFlow transcends component-level optimiza-
tion by treating every task as an experience from which to refine
its own high-level management policies. Its architecture features a
reflective loop where the entire execution trace of a task, including
successes, failures, and corrections, is analyzed to synthesize ab-
stract, structured knowledge. This knowledge, encapsulated as effec-
tive procedural patterns or critical data-handling warnings, directly
reshapes the agent’s future strategic choices, such as how to triage
tasks or structure an analytical plan. Consequently, HealthFlow
learns not just to execute tasks more effectively but to strategically
manage the problem-solving process itself.

Furthermore, evaluating such advanced agent capabilities reveals
a critical gap in existing resources. General-purpose agent bench-
marks [27] lack the necessary domain specificity, while prevalent
medical datasets [18, 19] are dominated by closed-ended question-
answering tasks, failing to assess the complex data analysis and
modeling skills central to clinical research [32, 37]. To address this,
we introduce EHRFlowBench, a new benchmark comprising realis-
tic, evidence-grounded data analysis workflows. These workflows
are systematically mined from established publications on Web-
based academic repositories, effectively transforming unstructured
Web content into a structured testbed for the WWW community.

Relevance to WWW and the Semantics and Knowledge
Track. The imperative to transform the Web from a passive reposi-
tory of scientific knowledge into an active, operational engine for
discovery is a grand challenge for the WWW community. This
requires systems that can understand and act upon the complex,
procedural knowledge embedded in scientific literature. While the
WWW community has long focused on knowledge extraction and
semantic representation, a gap remains in modeling the semantics
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Table 1: Architectural and evolutionary comparison of representative AI agent frameworks.

Framework Benchmarked Tasks Evolutionary Mechanism Key Characteristics & Limitations

Biomni [17] (Stanford) Biomedical data analysis
(gene, drug, etc.)

✗ No evolution Dynamically composes workflows but relies on a fixed set of tools, limiting its
adaptability to tasks that require newly developed tools.

AFlow [50] (ICLR 2025 Oral) Code generation, Math,
QA

✓ MCTS-based workflow re-
finement

Frames workflow generation as a search problem is computationally intensive.
Rely on learning abstract strategic knowledge from outcomes.

Alita [30] (Princeton) Agent (general), math,
medical VQA

✓ MCP creation & reuse Creating new MCP tools but lacks a mechanism for refining its high-level
strategic planning or workflow orchestration.

STELLA [20] (Princeton) Biomedical QA ✓ Evolving template library &
tool

Evolution is component-level, improving reasoning templates and the toolset.
Core multi-agent coordination and strategy remain static.

AlphaEvolve [28] (Google) Scientific computing, Al-
gorithm optimization

✓ Evolutionary code mutation Focus on optimizing a specific artifact (the code) based on a fixed evaluation
metric, rather than evolving the agent’s high-level strategic planning.

HealthFlow (Ours) Agentic health data sci-
ence, medical QA

✓ Synthesizing experience
(reflection, feedback, etc.)

Meta-level learning, allowing agents to evolve its own strategic planning
from experience, moving beyond component-level optimization.

of scientific procedures to support intelligent agent behavior. Our
work directly answers this specific Web-related scientific research
challenge. HealthFlow’s meta-level learning mechanism provides
a novel framework for converting unstructured procedural expe-
riences into an evolving, structured knowledge base of strategic
plans. By creating and consuming a dynamic data model of sci-
entific strategy, our work advances core themes of the Semantics
and Knowledge track, including data modeling for human-machine
intelligence, intelligent system behavior, and enabling LLM agents.
By demonstrating this in the critical domain of healthcare and by
creating EHRFlowBench from Web-based literature, we provide
both a foundational method and a community resource to advance
toward a more intelligent and scientifically potent Web.

In summary, our contributions are threefold:
(1) We propose HealthFlow, an AI agent that introduces meta-

level strategic learning. Its core innovation is an experience-
driven evolution mechanism that refines the agent’s high-level
orchestration policies, a stark contrast to prior work focused
on operational-level components.

(2) We introduce EHRFlowBench, a public benchmark for AI agent-
driven analysis of electronic health records, featuring complex,
realistic clinical research tasks derived from peer-reviewed
literature to ground future research.

(3) We conduct comprehensive experiments showing that Health-
Flow’s self-evolving strategic approach yields significant im-
provements in task success, robustness, and efficiency com-
pared to state-of-the-art agent frameworks.

2 Related Work
Predefined agentic workflows. Early and many contemporary

agentic systems rely on human-designed workflowswith fixed oper-
ational loops. Pioneering efforts like AutoGPT [39] andGPT4Tools [48]
demonstrate autonomous task execution by chaining LLM calls,
but their high-level strategy for task decomposition and execu-
tion is hard-coded. Subsequent systems such as HuggingGPT [36]
and MetaGPT [15] introduce more sophisticated tool orchestration
and multi-agent role-playing, yet their overarching operational se-
quences remain static. This paradigm extends to scientific domains.
For instance, frameworks like SciToolAgent [8] provide more sci-
entific tools, Robin [13] automates a predefined cycle of hypothesis
generation and experimentation, and Biomni [17] executes complex
biomedical tasks using a fixed “select-plan-execute” loop. While

powerful, these systems are fundamentally constrained by their
inability to learn from or adapt their high-level strategy.

Towards self-evolving agents. A more advanced line of research
enables agents to evolve, but this evolution is typically confined to
the operational level, improving specific components or artifacts
within a fixed strategic framework. One approach focuses on refin-
ing tools and reasoning templates. For example, STELLA [20] and
OriGene [51] improve their performance by expanding a library
of tools and refining thought-process templates based on feedback.
Other methods focus on iterative self-improvement on a single
output, such as self-reflection [38], Self-Refine [26], or optimizing
a specific artifact, like the evolutionary code mutation in AlphaE-
volve [28]. Frameworks like TextGrad introduce optimization by
backpropagating LLM-generated feedback, offering a different par-
adigm for refinement [49]. As summarized in Table 1, despite their
advances, these approaches share a common limitation: the agent
learns to be a better tool-user or solution-reuser, but not a better
strategic manager. The overarching meta-strategy remains prede-
fined and outside the agent’s learning scope.

3 Methodology
HealthFlow achieves autonomous healthcare research through a
multi-agent architecture and a meta-level learning loop (Figure 1).

3.1 Formalism and System Overview
We formalize a research problem as a task𝑇 . The goal of HealthFlow
is to produce a solution 𝑆 that satisfies the requirements of𝑇 . This is
achieved through a stateful, iterative process. At each turn 𝑖 , the sys-
tem generates a plan 𝑃𝑖 , which is a sequence of actions {𝑎1, . . . , 𝑎𝑘 }.
An action 𝑎 can be a tool call or code execution. The execution
of plan 𝑃𝑖 produces a trace 𝜏𝑖 , which logs all actions, intermediate
outputs, and errors. The system’s strategic knowledge is stored in a
dynamically growing experience memory,M = {𝐸1, . . . , 𝐸𝑁 }. The
core of HealthFlow is a learning process that updatesM based on
successful task completions, thereby improving its future planning
capabilities.

3.2 A Collaborative Multi-Agent Architecture
To manage the cognitive complexity of research tasks, HealthFlow
employs a team of four specialized agents, each responsible for a
distinct phase of the problem-solving lifecycle: planning, execution,
evaluation, and reflection.

2
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Input

OUTPUT: **Example of a `code_execution` plan:**...
## Step 1: Explore the workspace...
## Step 2: Create a Python script for analysis...
## Step 3: Write the analysis script...
## Step 4: Execute the script...
## Step 5: Show the final result...

Generate Plans

Retrieve Past Experience

Infer from
Success Cases

Inspect Similar
Past Tasks

+

Meta Agent

Heuristic Warning...

Evaluation Implementation Analysis...

Type

Category

Hierarchical Retrieval

INPUT: {user_request}, {experiences}, {feedback}...

Execute Code Task

Executor Agent

Handle Execution Errors

Evaluate Agent Answers

Evaluator Agent

Medical 
Accuracy

Safety

Reasoning
Quality

Tool Usage 
Efficiency

CompletenessClarity

Output Evaluation Scores

Threshold Checking

Reflector Agent

Record Success Examples

Heuristic Code
Snippet

Workflow 
Pattern

Warning

Self-Evolving

Plans

Web Search Code Interpreter File Generating

Tools (MCP)

Scores

Experiences

Dimensions

Experience

Return Output and Logs

analyze_model.py        logistic_regression.pkl

model_performance.csv   model_analysis.png

execution.log           results.json...

Answers

Tasks
[Task]: Develop a model based on MIMIC-IV.csv to 
predict patient outcomes, and examine how 
performance improves with the inclusion of 
extended historical records.

Report
-----------------------------------------------------------

RESEARCH REPORT
-----------------------------------------------------------

1. TASK DESCRIPTION
-----------------------------------------------------------
- Task: _____________________________
- Dataset: ___________________________
- Task Type: [ e.g., Visualization / Modeling ]
- Target Variable: _____________________
2. METHODOLOGY
--------------------------------------------------------
- Data Preprocessing:
• Missing value handling
• Normalization / Encoding

- Feature Engineering:
• Clinical features
• Time-series features

- Model Architecture:
• CNN-LSTM Hybrid / Transformer-based model
• Diagram Reference: model_architecture.png

- Loss Function:
• Custom multitask loss (e.g., MSE)

3. IMPLEMENTATION CODE (PYTHON)
--------------------------------------------------------
```python
from models import MyClinicalModel
model = MyClinicalModel(input_dim=..., ...)
model.train(train_data, epochs=100, ...)

Tool Universe

Figure 1: The self-evolving architecture of HealthFlow. The framework operates in a continuous learning loop. (1) A task is
received by the meta agent, which generates a strategic plan by retrieving relevant past experiences. (2) The executor agent
executes this plan using tools, producing results and detailed logs. (3) The evaluator agent assesses the execution, providing
scores and feedback for immediate, short-term correction. (4) Upon successful completion, the reflector agent analyzes the
entire process to synthesize abstract, structured experience (e.g., heuristics, workflow patterns). Experiences are stored in a
persistent memory, augmenting the meta agent’s strategic capabilities for future tasks and enabling the system’s long-term,
meta-level evolution.

Meta agent: strategic planner. The meta agent, 𝐴𝑀 , serves as the
cognitive orchestrator. Given a task 𝑇 , the experience memoryM,
and feedback 𝑓𝑖−1 from a previous attempt (where 𝑓0 is null), it
devises a high-level strategic plan 𝑃𝑖 . This process begins by re-
trieving a set of relevant experiences {𝐸𝑘 } ⊂ M. These experiences
augment the agent’s context, guiding it to generate a more robust
and efficient plan. Formally:

{𝐸𝑘 } = Retrieve(M,𝑇 ) and 𝑃𝑖 = 𝐴𝑀 (𝑇, {𝐸𝑘 }, 𝑓𝑖−1) (1)

Executor agent: transparent execution engine. The executor agent,
𝐴𝐸 , is responsible for grounding the meta agent’s strategic plan
into concrete actions. It operates within a secure, sandboxed en-
vironment and translates plan 𝑃𝑖 into a sequence of tool calls and
code executions, producing a detailed execution trace 𝜏𝑖 :

𝜏𝑖 = 𝐴𝐸 (𝑃𝑖 ) (2)

Crucially, the executor is a transparent “CodeAct”-style engine [45],
ensuring that every decision, tool interaction, and intermediate
result is auditable and reproducible. The executor integrates a wide
array of tools via the Model Context Protocol (MCP) [1], including
web search and access to ToolUniverse [11, 12], an ecosystem of
machine learning models, datasets, and scientific packages.

Evaluator agent: short-term corrector. The evaluator agent, 𝐴𝑉 ,
provides immediate, task-specific critique to enable a tight self-
correction loop. After an execution attempt, it assesses the trace 𝜏𝑖
and any generated artifacts against the task requirements 𝑇 :

(𝑠𝑖 , 𝑓𝑖 ) = 𝐴𝑉 (𝜏𝑖 ,𝑇 ) (3)

It produces a quantitative score 𝑠𝑖 and qualitative, actionable feed-
back 𝑓𝑖 . If 𝑠𝑖 is below a predefined success threshold 𝜃𝑠𝑢𝑐𝑐 , the
feedback 𝑓𝑖 is routed back to the meta agent to guide the genera-
tion of a revised plan 𝑃𝑖+1, initiating a new cycle of execution and
evaluation.

Reflector agent: long-term knowledge synthesizer. The reflector
agent, 𝐴𝑅 , is the engine of HealthFlow’s long-term, meta-level evo-
lution. It is activated upon successful task completion (i.e., when
𝑠𝑖 ≥ 𝜃𝑠𝑢𝑐𝑐 ). The reflector analyzes the entire history of the suc-
cessful attempt, including initial failures and subsequent correc-
tions documented in the traces {𝜏1, . . . , 𝜏𝑖 }. Its goal is to distill this
procedural history into abstract, generalizable knowledge. This is
achieved by instructing an LLM to synthesize insights according to
a predefined JSON schema:

𝐸𝑛𝑒𝑤 = 𝐴𝑅 ({𝜏1, . . . , 𝜏𝑖 },𝑇 ) (4)

The output, a new set of experiences 𝐸𝑛𝑒𝑤 , contains structured
insights such as effective heuristics, reusable workflow patterns, or
warnings about potential data pitfalls.

3.3 Meta-Level Evolution through Experience
HealthFlow adapts by transforming procedural execution into durable
knowledge. We provide a formal proof for the efficacy of this evo-
lutionary mechanism in Appendix D.

Synthesizing experience into structured knowledge. To ensure
learned knowledge is actionable and retrievable, the reflector agent,
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𝐴𝑅 , synthesizes experiences into a structured format. An expe-
rience 𝐸 is a record with key attributes: a type 𝐸𝑡𝑦𝑝𝑒 in {heuris-
tic, code_snippet, workflow_pattern, warning}; a categorical la-
bel 𝐸𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (e.g., pediatric_care, EHR_data_preprocessing), and a
content body 𝐸𝑐𝑜𝑛𝑡𝑒𝑛𝑡 containing the specific knowledge. After a
successful task, 𝐴𝑅 analyzes the execution trace to generate a set
of new experiences, 𝐸𝑛𝑒𝑤 . These structured experiences are then
added to the memory:M ←M ∪ 𝐸𝑛𝑒𝑤 .

Experience-augmented planning and learning. The framework
learns by continuously populating its experiencememoryM. When
a new task 𝑇 ′ is presented, the meta agent 𝐴𝑀 retrieves relevant
prior knowledge using an LLM-based re-ranking strategy. In this
process, all experiences fromM are provided as context to an LLM,
which then ranks them by semantic relevance to the task. The
top-𝑘 (𝑘 = 5) experiences are incorporated into the prompt for
𝐴𝑀 , providing a rich, contextual foundation for its initial plan. As
M grows, 𝐴𝑀 gains access to a broader and more refined set of
strategies. The full algorithm is detailed in Appendix C.

Handling conflicting and evolving knowledge. The experience
memory may accumulate advice that appears contradictory when
viewed in isolation. HealthFlow treats this not as a flaw, but as a fea-
ture of rich, context-dependent knowledge. Seemingly conflicting
heuristics often reflect valid strategies for different scenarios (e.g.,
distinct patient cohorts or data types). Our framework leverages
the meta agent’s contextual reasoning by retrieving a set of rele-
vant, albeit potentially diverse, experiences. The LLM-based agent
then dynamically synthesizes this advice, prioritizing or adapting
strategies that are most applicable to the specific nuances of the
current task, allowing for flexible, context-aware decision-making.

Knowledge bootstrapping in training mode. To address the cold-
start problem, HealthFlow includes a training mode where it pro-
cesses a curated set of problems with known reference solutions.
In this mode, the evaluator uses the ground truth for critique, and
crucially, the reflector is only permitted to synthesize experiences
from tasks that are successfully validated against the reference. This
supervised process populates the experience memory with veri-
fied, high-quality knowledge, bootstrapping the agent’s strategic
capabilities before it encounters new, unseen tasks.

3.4 EHRFlowBench: A Benchmark for Agentic
Healthcare Research

The development of increasingly sophisticated autonomous agents
necessitates benchmarks that can rigorously assess their real-world
problem-solving abilities. In the general domain, benchmarks like
GAIA [27] have become a standard for evaluating agents on tasks
requiring tool use, multi-step reasoning, and web navigation. How-
ever, a similar standard is conspicuously absent in healthcare re-
search. We introduce EHRFlowBench, designed to mirror the com-
plexity of real-world research challenges and facilitate the repro-
ducible evaluation of advanced healthcare agents.

Our creation process is a two-stage, LLM-assisted and human-
verified procedure. (1) Candidate paper screening: The process be-
gins with the collection of 51,280 papers published between 2020
and 2025 from top-tier AI and data mining conferences (AAAI, ICLR,

ICML, NeurIPS, IJCAI, KDD, WWW). To identify EHR-related pa-
pers, we use a majority-voting ensemble of LLMs to classify titles
based on their relevance to AI applications on EHR data, resulting
in 162 candidate papers. This is followed by manual review, yielding
118 highly relevant papers. (2) Task extraction: We then prompt an
LLM to extract evidence-grounded tasks from these papers. The
LLM is instructed to generate a detailed task description, a category,
and a reference answer for each, resulting in an initial pool of 585
tasks.

We manually consolidate semantically similar task types into
a final taxonomy of 10 major categories that cover the research
lifecycle (Figure 2). During the final manual selection phase, we
apply stratified sampling to ensure category diversity. We retain
all tasks from categories with fewer than 10 instances. For larger
categories, we select a representative subset of 10 to 20 tasks, guided
by criteria such as diversity of modeling techniques and clinical
objectives. This process results in a final benchmark of 110 tasks,
with 100 for evaluation and 10 (one from each of the 10 categories)
for the training set used by HealthFlow.

218
(37.3%)

167
(28.5%)

47
(8.0%)

36
(6.2%)Initial

17(15.5%)

15(13.6%)

15(13.6%)

12(10.9%)
11(10.0%)

9(8.2%)

8(7.3%)

7(6.4%)

9(8.2%)
7(6.4%)

Final

Task Category
Model Implementation
Model Evaluation
Feature Engineering
Cohort Definition
Data Analysis
Model Analysis
Algorithm Implementation
Results Analysis
Data Preprocessing
Ablation Study
Model Training
Others

Figure 2: Task category distribution in EHRFlowBench. The
initial distribution of 585 LLM-extracted tasks (left) is refined
through manual curation and stratified sampling into a final
set of 110 tasks across 10 core research categories (right), with
irrelevant categories like “ablation study” being discarded.

4 Experimental Setups
4.1 Datasets, Tasks, and Evaluation
Wedefine autonomous healthcare research as the ability to call tools,
write code, and independently complete medical tasks for a given
research question. To this end, we evaluate HealthFlow across five
benchmarks assessing open-ended research capabilities (EHRFlow-
Bench), complex EHR data analysis and modeling (MedAgent-
Board [53]), medical knowledge reasoning (MedAgentsBench [42],
HLE [29]), and tool-augmented clinical reasoning (CureBench [10]).

EHRFlowBench. Serving as the primary testbed for end-to-end,
multi-step autonomous healthcare research, it consists of 110 com-
plex tasks derived from peer-reviewed literature. Performance is
assessed using an LLM-as-a-judge ensemble. For each task, the en-
semble provides integer scores from 1 to 5 across three dimensions,
which are then combined into a weighted final score for methodol-
ogy soundness (70%), presentation (20%), and artifact quality (10%).

MedAgentBoard. MedAgentBoard [53] evaluates practical skills
in handling structured EHR data. It includes 100 tasks on theMIMIC-
IV [21, 22] and TJH [47] datasets, requiring a full analytical pipeline.
Performance is primarily measured by task success rate, which is
determined through manual human evaluation. A task is deemed
successful if the agent’s final generated artifacts fully and correctly

4
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Table 2: Main evaluation results of HealthFlow and its variants on five medical agent benchmarks. We compare our framework
against baselines and present an enhanced version, HealthFlow + ToolUniverse, which integrates a broader set of external
tools. For fair comparison, all agent frameworks are powered by DeepSeek-V3 by default. The ablation study demonstrates
the contribution of key components: w/o Feedback is a version without reflection or evaluation; w/o Experience disables the
experience memory; and w/o Training omits initial knowledge bootstrapping on EHRFlowBench and CureBench (the two
benchmarks with curated training samples). The best result in each column is in bold.

Category Methods EHRFlowBench MedAgentBoard MedAgentsBench HLE CureBench
(LLM Score ↑) (Success Rate % ↑) (Accuracy % ↑) (Accuracy % ↑) (Accuracy % ↑)

General LLM
DeepSeek-V3 2.65±0.03 3.70±2.28 8.42±2.29 2.33±2.45 86.20±3.57
DeepSeek-R1 2.78±0.03 3.16±1.64 39.03±4.33 6.44±3.34 87.57±3.45

Medical LLM
HuatuoGPT-o1 1.83±0.06 0.00±0.00 19.10±3.58 6.91±3.97 78.31±4.26
MedGemma 2.17±0.07 1.90±1.34 16.07±3.87 8.49±4.49 78.02±4.55

Multi-agent Collab.
MedAgents 1.76±0.06 0.00±0.00 20.00±3.64 2.33±2.45 86.15±3.80
MDAgents 1.89±0.09 4.29±2.19 20.16±4.09 2.33±2.45 83.86±3.76
ColaCare 2.04±0.07 1.16±1.04 21.58±3.54 0.00±0.00 85.95±3.62

General Agent
AFlow 3.31±0.06 4.90±2.11 30.30±4.46 0.00±0.00 81.95±3.80
Alita 2.77±0.07 9.48±3.27 23.97±4.07 4.49±3.31 85.18±3.92

Biomedical Agent
Biomni 2.22±0.06 45.61±4.51 22.72±3.87 4.16±3.35 81.68±3.58
STELLA 2.39±0.07 38.46±4.61 26.97±4.60 7.11±3.72 85.98±3.78

Ours

HealthFlow + ToolUniverse 3.98±0.06 81.89±3.87 30.68±4.28 9.13±4.52 90.29±3.17
HealthFlow 3.82±0.07 66.09±5.06 28.08±4.51 4.96±3.34 88.31±3.31
w/o Feedback 2.78±0.07 42.63±4.48 21.52±3.70 2.33±2.45 87.20±3.66
w/o Experience 3.63±0.08 57.59±5.46 25.59±4.25 6.44±3.34 87.83±2.91
w/o Training 3.80±0.07 — — — 88.01±3.59

satisfy all stated requirements. We also use an LLM to score so-
lutions on a 1-to-5 scale across four key dimensions: (1) data ex-
traction and statistical analysis, (2) predictive modeling, (3) data
visualization, and (4) report generation.

MedAgentsBench. This benchmark [42] is used to evaluate the
agent’s foundational medical reasoning and knowledge retrieval
capabilities, which are prerequisites for any meaningful healthcare
research. We use a curated set of 100 challenging multiple-choice
questions from its “hard set” to avoid ceiling effects. Performance
is measured by accuracy.

Humanity’s Last Exam (HLE).. We use the medical subset of
HLE [29] to assess reasoning on expert-level problems designed
to be difficult for LLMs. Our test set includes 45 text-only ques-
tions from the “Biology/Medicine” category. Following the official
protocol [5], performance is measured by binary correctness.

CureBench. To evaluate agentic tool-augmented reasoning in a
clinically relevant context, we include CureBench [10], a benchmark
for therapeutic decision-making. CureBench tasks models with
complex reasoning over patients, diseases, and drugs, requiring the
use of external biomedical tools (e.g., FDA databases, PubMed). We
use a randomly selected set of 100 multiple-choice questions from
the validation set, as the official test set lacks ground-truth labels.
An additional 10 samples are randomly selected for HealthFlow’s
training. Performance is measured by accuracy.

4.2 Baseline Methods
We compare HealthFlow against a set of representative baselines:
(1) general LLMs: DeepSeek-V3 [25], DeepSeek-R1 [14]; (2) med-
ical LLMs: HuatuoGPT-o1 [6], MedGemma [35]; (3) multi-agent

collaboration frameworks: MedAgents [43], MDAgents [23], Co-
laCare [46]; (4) general agent frameworks: AFlow [50], Alita [30];
and (5) biomedical agent frameworks: Biomni [17], STELLA [20].

4.3 Implementation Details
EHRFlowBench curation and evaluation. The LLM ensemble for

paper filtering includes DeepSeek-V3, DeepSeek-R1, and Qwen3-
235B (Qwen3-235B-A22B-Instruct-2507 [31]). Task extraction is
performed by DeepSeek-V3. The EHRFlowBench’s LLM-as-a-judge
evaluation ensemble consists of DeepSeek-V3, DeepSeek-R1, Claude-
4-Sonnet [3], Kimi-K2 [44], and GLM-4.5 [52]. The MedAgent-
Board’s LLM judge is DeepSeek-V3. We use bootstrapping on all
test set samples 100 times to report the mean and standard devia-
tions. Metrics of success rate and accuracy are multiplied by 100
for readability purposes.

Hardware and software configuration. All experiments are con-
ducted on a Mac Studio M3 Ultra with 512GB of RAM. HuatuoGPT-
o1 and MedGemma are deployed locally using LMStudio. All agent-
based baselines are powered by DeepSeek-V3 using their official
implementations (except for Alita, for which we use the OpenAlita
community implementation [33]). We configure external tools, in-
cluding web search with the Serper search API and access to Tool-
Universe, under MCP. HealthFlow is developed in Python 3.12. To
ensure transparency and facilitate potential local deployment in
healthcare settings, HealthFlow’s meta, evaluator, and reflector
agents use DeepSeek-V3 by default. For our main experiments,
HealthFlow’s executor backend integrates ToolUniverse and is also
powered by DeepSeek-V3. To provide a robust and standardized
execution environment for baselines, other HealthFlow variants de-
fault to a Claude Code [2] backend powered by the Kimi-K2 model.
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During a task, HealthFlow employs an internal self-correction loop;
the evaluator agent assigns a score on a 10-point scale, and a score
below 6.0 triggers a retry, with a maximum of 3 attempts per task.

5 Experimental Results and Analysis
5.1 Main Results and Ablation Study

Comparison against diverse baselines. As shown in Table 2, Health-
Flow substantially outperforms all baselines across tasks, especially
on EHRFlowBench and MedAgentBoard, which test end-to-end
data analysis and modeling. The integration of ToolUniverse pro-
vides a substantial performance uplift, demonstrating the value of a
rich, accessible scientific tool ecosystem. On knowledge-intensive,
tool-light benchmarks like MedAgentsBench, HLE, and CureBench,
HealthFlow’s performance is competitive. As expected, non-agentic
LLMs and multi-agent frameworks that lack code execution capa-
bilities struggle on these tasks; they are unable to complete the
multi-step analytical pipelines. Biomedical agent frameworks like
Biomni and STELLA outperform general agents on MedAgent-
Board, likely benefiting from specialized, built-in tools that provide
relevant priors for healthcare data analysis.
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Figure 3: Head-to-head performance of HealthFlow against
leading agent frameworks on (a) EHRFlowBench and (b)
MedAgentBoard. Each bar shows the distribution for all tasks
in a direct comparison against a specific baseline. Outcomes
are categorized as a tie if the score difference is ≤ 0.25.

Further illustrating this advantage, a head-to-head comparison in
Figure 3 shows HealthFlow achieving a dominant win rate against
other leading frameworks. On the highly complex and open-ended
tasks of EHRFlowBench, HealthFlow’s superiority is clear. Its ro-
bust performance is confirmed on MedAgentBoard, which focuses
on structured EHR data analysis pipelines, where it maintains a
significant lead even against strong, domain-specific baselines.

Ablation on core components. Our ablation study in Table 2 quan-
tifies the contribution of HealthFlow’s core components. Removing
the feedback loop entirely (w/o Feedback), which includes both the
evaluator and reflector agents, leads to a significant performance
drop on EHRFlowBench (from 3.82 to 2.78) and MedAgentBoard
(from 66.09% to 42.63%). This result underscores a key finding: an
initial plan is rarely perfect, and the ability to iteratively critique
and refine the workflow is fundamental to success. Disabling only
the long-term experience memory (w/o Experience) also degrades
performance (from 3.82 to 3.63 on EHRFlowBench), demonstrating
that while short-term correction is critical, the accumulation of

strategic knowledge provides a durable advantage. Finally, omit-
ting the initial knowledge bootstrapping (w/o Training) results in a
minor performance decrease on EHRFlowBench (from 3.82 to 3.80).
This indicates that while pre-populating the memory with verified
knowledge is beneficial, HealthFlow’s ability to learn on the fly
from new tasks remains a powerful mechanism for adaptation.

5.2 Further Analysis
Impact of LLM backbones and executors. Table 3 reveals that the

choice of underlying LLM is critical. The framework’s architecture
separates frontend reasoning models (meta, reflector, evaluator)
from the backend coding model (executor). Using a more powerful
reasoning model like DeepSeek-R1 as the frontend significantly
boosts performance, highlighting that better strategic planning di-
rectly translates to better outcomes. Conversely, a capable strategy
is ineffective without a reliable backend. Substituting the executor
with a less proficient Qwen3-Coder causes a near-total performance
collapse on MedAgentBoard (from 66.09% to 6.04%). Failure analysis
reveals that Qwen3-Coder frequently misinterpreted file system
instructions, failing to locate input data and causing tasks to termi-
nate prematurely. This starkly illustrates that a robust execution
engine demands exceptional instruction-following fidelity, not just
code generation. The best performance is achieved with our native
backend powered by DeepSeek-V3 and integrated with ToolUni-
verse due to pairing an execution backend that is not only a capable
coder but also part of a rich, domain-aware tool ecosystem, confirm-
ing that optimal performance requires synergy between high-level
strategy and execution capability.

Table 3: Impact of different LLM backbones on HealthFlow
performance. We evaluate variants by changing the fron-
tend (meta, reflector, evaluator agents) and backend (execu-
tor agent).

Frontend Backend EHRFlowBench MedAgentBoard
(Meta/Reflector) (Executor) (LLM Score ↑) (Success Rate % ↑)

DeepSeek-V3 Claude Code (Kimi) 3.82±0.07 66.09±5.06
DeepSeek-R1 Claude Code (Kimi) 3.84±0.07 81.64±3.77
Kimi-K2 Claude Code (Kimi) 2.41±0.10 79.53±4.54
Qwen3-235B Claude Code (Kimi) 3.53±0.09 79.03±4.41
DeepSeek-V3 Qwen3-Coder (Qwen) 2.64±0.07 6.04±2.34
DeepSeek-V3 Ours (DeepSeek-V3) 3.98±0.06 81.89±3.87

Fine-grained evaluation across task categories. To better under-
stand HealthFlow’s capabilities, we conduct a fine-grained analysis
across key dimensions on EHRFlowBench and MedAgentBoard (Ta-
ble 4). On EHRFlowBench, HealthFlow excels in method soundness
(3.72) and artifact generation (3.96), demonstrating its ability to
both devise sound research plans and produce high-quality outputs
like statistical code, trained models, and visualizations. On MedA-
gentBoard, HealthFlow shows superior performance on the most
complex, integrative tasks: predictive modeling (4.21) and report
generation (4.10). While a specialized baseline like STELLA per-
forms competitively on routine sub-tasks such as data extraction
and visualization, HealthFlow’s advantage in the end-to-end mod-
eling process highlights the value of its adaptive meta-planning
capabilities for holistic problem-solving.
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Table 4: Fine-grained performance breakdown on EHRFlowBench and MedAgentBoard. Scores are the mean and standard
deviation from multiple LLM judges on a 1-5 scale. This consolidated view shows HealthFlow’s strong performance across both
high-level research methodology (EHRFlowBench) and practical health data science tasks (MedAgentBoard).

EHRFlowBench MedAgentBoard

Methods
Method

Soundness (70%)
Presentation
Quality (20%)

Artifact
Generation (10%)

Data Extraction
& Stats

Predictive
Modeling

Data
Visualization

Report
Generation

AFlow 3.22±0.95 3.99±0.58 2.60±1.12 3.67±1.20 3.84±0.73 3.64±1.63 3.79±0.97
Alita 2.64±1.04 3.49±0.81 2.19±1.01 3.24±1.40 2.70±1.13 3.00±1.34 2.79±1.06
Biomni 2.04±1.08 2.72±0.94 2.43±1.11 4.62±0.69 3.40±0.72 4.22±0.82 4.03±0.71
STELLA 2.17±1.03 2.92±0.93 2.80±1.09 4.68±0.65 3.28±1.13 4.75±0.43 3.15±1.13

HealthFlow 3.72±1.03 4.15±0.67 3.96±0.98 4.58±0.70 4.21±0.68 4.75±0.43 4.10±0.85

Dynamics of experience synthesis and retrieval. An analysis of
HealthFlow’s learning loop reveals a dynamic adaptation to task
structure (Figure 4). For the complex, open-ended tasks in EHRFlow-
Bench, the agent prioritizes synthesizing abstract heuristics (31.1%
of experiences) butmost frequently retrieves concrete code_snippets
(1.91 average per task). This indicates a strategy of grounding high-
level plans with actionable code for novel problems. Conversely, for
the structured pipelines in MedAgentBoard, the agent most often
retrieves heuristics (1.91 average per task), suggesting a focus on
refining existing workflows. Across both benchmarks, synthesized
knowledge is overwhelmingly concentrated in the Clinical &
Medical Analysis category (Figure 5), confirming that learning is
sharply focused on core domain challenges. This interplay allows
HealthFlow to build a contextually relevant knowledge base, opti-
mizing for strategic guidance on routine tasks and reusable code
for novel ones.
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Figure 4: Distribution of experience synthesis and retrieval
across EHRFlowBench and MedAgentBoard benchmarks.
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Figure 5: Distribution of synthesized experience categories.

Case studies. Two case studies illustrate HealthFlow’s capabil-
ities. The first, a data visualization task from MedAgentBoard,
demonstrates the practical impact of meta-level learning. As shown
in Figure 6, when tasked with visualizing the correlation between
systolic and diastolic blood pressure, HealthFlow’s meta agent re-
trieves relevant prior knowledge, including a critical heuristic about
handling outliers in clinical data. This experience informs a robust
plan that incorporates proactive data validation, such as setting

clinically plausible axis limits, a step that is not explicitly requested
but is essential for meaningful analysis.

The outcome of this experience-driven approach is shown in
Figure 7. HealthFlow produces a clean, interpretable visualization
(b) that aligns closely with the reference answer (a). In stark con-
trast, competing agents like Biomni (c) and STELLA (d), which lack
this adaptive planning mechanism, fail to perform the necessary
validation. Their resulting plots are rendered uninterpretable by
outliers that compress the primary data distribution, highlighting a
critical failure mode for agents that operate without domain-aware,
learned strategies.

A second case from EHRFlowBench demonstrates versatility on
more complex research tasks. Without a provided dataset, Health-
Flow autonomously simulates realistic data, implements a specified
CNN-LSTM architecture, and executes a full training and evaluation
workflow. It successfully produces all required artifacts, including
a training loss plot, final accuracy metrics, and saved model check-
points. These cases show that HealthFlow’s ability to learn and
apply strategic knowledge enables it to conduct robust, multi-step
research that adapts to domain-specific nuances.

Human evaluation. To complement our automated metrics, we
conduct a rigorous human evaluation to assess the practical utility
and quality of the generated solutions. We enlist 12 expert evalu-
ators, comprising PhD and MD students from disciplines such as
AI for healthcare, biostatistics, biomedical engineering, and clinical
medicine. The evaluators are tasked with assessing a random subset
of 20 tasks, with 10 drawn from EHRFlowBench and 10 from MedA-
gentBoard. In a blind review process, they perform a head-to-head
comparison of the final solutions generated by HealthFlow, Alita,
Biomni, and STELLA. For each task, evaluators select the single
best solution, with the option to choose “None” if no output is sat-
isfactory. To mitigate bias, the identities and presentation order of
the agents are randomized for each task and evaluator. The average
pairwise inter-rater agreement is 71.54%, indicating substantial con-
sensus. The results, summarized in Figure 8, reveal a clear expert
preference for HealthFlow’s solutions across tasks.

6 Discussion
Limitations. While HealthFlow represents a significant advance,

its performance is fundamentally tethered to the capabilities of
its underlying LLMs. Biases or knowledge gaps in the LLMs can
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As an expert AI agent, your goal is to [...]. Please use the following data examples to understand the format and 
structure of the data you will be working with.
--- Dataset Information --- [...]
Create a scatter plot to visualize the relationship between Systolic blood pressure and Diastolic blood pressure. 

Task

For [...], follow this workflow: 
1. Load the dataset. 
2. Filter the data based on [...].
3. Use library [...] to create the plot. 
4. Customize the plot with appropriate 
labels and title. 
5. Save or display the plot. 

workflow_pattern
import matplotlib.pyplot as plt [...]
def create_scatter_plot([...]):

data = pd.read_csv(data_path)
plt.figure(figsize=(10, 6))
for outcome in [...]:

[...]
plt.xlabel(x_label)
[...]

code_snippet

For visualization requests involving 
medical datasets, always start by filtering 
the data based on the specified criteria 
(e.g., 'Outcome' values) to ensure the 
analysis is focused and relevant. This 
approach enhances the clarity and accuracy 
of the visualization.

heuristic

# Plan
## Relevant Context from Past Experience
[...]
## Step 1: Explore the workspace [...]
## Step 2: Create Python Script for Scatter 
## Step 3: Write Logic to Script [...]
## Step 4: Execute the Script [...]
## Step 5: Verify Output [...]

# Code
# Create scatter plot
plt.figure(figsize=(10, 8))
plt.scatter(df_clean['Systolic blood pressure'], 

df_clean['Diastolic blood pressure'], 
alpha=0.5, s=10,color='blue')

# Add labels and formatting
plt.title('Systolic vs Diastolic Blood Pressure 
Correlation', fontsize=14, pad=20)

# Error checking
if missing_cols:

raise ValueError(f"Missing columns: 
{missing_cols}")
# Set reasonable axis limits based on 
typical blood pressure ranges
plt.xlim(50, 250)
plt.ylim(20, 150)

"score": 9.0,
"feedback": "The scatter plot was correctly generated, [...]."
"reasoning": "Correctness is high (plot created as requested with sound data validation). [...]."

workflow_pattern warning 1 warning 2 heuristic code_snippet

a. Task

b. Retrieve 
Experiences

c. Trajectory

d. Evaluation

e. Reflection

Figure 6: An illustration of HealthFlow’s workflow on a data visualization task from MedAgentBoard (#56). The agent retrieves
past experiences (b) to inform its strategic plan (c), leading to a high-quality, domain-aware output. The entire trajectory is
then analyzed to synthesize new, generalizable knowledge through reflection (e), completing the self-evolution loop.

a. Reference Answer b. HealthFlow’s Answer c. Biomni’s Answer

d. STELLA’s Answer

Figure 7: Comparison of outputs for a data visualization task
on MedAgentBoard (#56). HealthFlow (b) performs essential,
experience-driven data validation, producing a result com-
parable to the reference answer (a). In contrast, frameworks
like Biomni (c) and STELLA (d) fail to handle outliers, ren-
dering their visualizations uninterpretable. Alita failed to
generate the required image.
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Figure 8: Human evaluation results. Distribution of votes
from 12 domain experts comparing solutions from four agent
frameworks across 20 tasks.

propagate into the agent’s strategic plans and synthesized experi-
ences. Furthermore, the experience synthesis process itself carries
an inherent risk: the agent might distill flawed or overly specific
heuristics from idiosyncratic successes, which could degrade future
performance if not properly generalized.

Future work. The HealthFlow framework could be adapted to
other scientific fields, such as computational biology, by curating
domain-specific tools and experiences. Extending the framework to
handle multi-modal inputs, such as medical imaging alongside EHR
data, would represent a major step towards a more comprehensive
AI research assistant.

Broader impact. HealthFlow can significantly accelerate health-
care research by automating complex data analysis and operational-
izing scientific knowledge from the Web. However, deploying au-
tonomous agents in this high-stakes domain presents risks, includ-
ing the potential for flawed scientific conclusions and data privacy
concerns. We advocate for a human-in-the-loop approach, position-
ing the agent as a powerful tool to augment, not replace, expert
oversight to ensure responsible and effective scientific discovery.

7 Conclusion
In this paper, we introduced HealthFlow, a self-evolving AI agent
designed to address the challenge of creating autonomous systems
that can effectively leverage Web-based scientific knowledge. By
implementing a meta-level strategic planning and evolution mech-
anism, HealthFlow learns not only to execute tasks but to evolve
its own high-level orchestration policies from experience. This
ability to learn how to manage research, rather than just how to
perform individual steps, directly tackles the bottleneck of static
strategies in current agents. To validate our approach, we devel-
oped EHRFlowBench, a challenging new benchmark derived from
Web-based scientific literature. Our experiments demonstrate that
HealthFlow’s adaptive, experience-driven strategy leads to supe-
rior performance compared to state-of-the-art frameworks. This
work contributes to the WWW community by offering a promising
approach for intelligent systems that can operationalize the vast
procedural knowledge on the Web, marking a significant step to-
ward more autonomous and effective AI for healthcare scientific
discovery.
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A Ethical Statement
The research presented in this paper adheres to high ethical standards for AI in healthcare. The development and evaluation of HealthFlow
and its accompanying benchmark, EHRFlowBench, are guided by the core principles of beneficence, non-maleficence, and fairness. All
datasets used in our experiments have been de-identified, ensuring that no protected health information (PHI) is exposed or used in our
research.

HealthFlow is intended for use as a research tool to assist healthcare professionals and data scientists and is not designed to replace
human clinical judgment or provide medical advice. To promote transparency and enable independent verification of our results, we commit
to making our source code, including the HealthFlow framework and the EHRFlowBench benchmark, publicly available.

B Reproducibility Statement
We are committed to the reproducibility of our results. To ensure full transparency, all code and data are publicly available at the following
anonymous project website: https://healthflow-agent.netlify.app/.

The website includes the EHRFlowBench benchmark, which contains the list of source papers and extracted tasks. For the HealthFlow
implementation, we also provide the complete source code, environment specifications, and the exact hyperparameters used in our
experiments.

C HealthFlow Algorithm
The core operational loop of HealthFlow is detailed in Algorithm 1. The process illustrates the collaboration between the specialized agents,
the short-term correction loop driven by the evaluator, and the long-term evolution driven by the reflector and the experience memory.

Algorithm 1 The HealthFlow self-evolving workflow.

Require: Task 𝑇 , Experience MemoryM, Max Retries 𝑁𝑚𝑎𝑥

Ensure: Final Solution 𝑆 or Failure
1: Initialize 𝐴𝑀 , 𝐴𝐸 , 𝐴𝑉 , 𝐴𝑅

2: Initialize retry count 𝑛 ← 0, feedback 𝑓 ← null
3: while 𝑛 < 𝑁𝑚𝑎𝑥 do
4: ⊲ Phase 1: Meta-Planning
5: Retrieve relevant experiences {𝐸𝑘 } ⊂ M for task 𝑇
6: Augment context for 𝐴𝑀 with {𝐸𝑘 } and feedback 𝑓

7: Generate plan 𝑃 ← 𝐴𝑀 (𝑇,M, 𝑓 )
8: ⊲ Phase 2: Execution
9: Execute plan, get trace 𝜏 ← 𝐴𝐸 (𝑃)
10: ⊲ Phase 3: Evaluation (Short-term Correction)
11: Evaluate outcome (𝑠, 𝑓 ) ← 𝐴𝑉 (𝜏,𝑇 )
12: if 𝑠 ≥ 𝜃𝑠𝑢𝑐𝑐 then
13: ⊲ Phase 4: Reflection (Long-term Evolution)
14: Synthesize new experience 𝐸𝑛𝑒𝑤 ← 𝐴𝑅 (𝜏,𝑇 )
15: Update memoryM ←M ∪ {𝐸𝑛𝑒𝑤 }
16: return Solution from trace 𝜏
17: else
18: Increment retry count 𝑛 ← 𝑛 + 1
19: end if
20: end while
21: return Failure

D Formal Proof of Evolving Efficacy
We provide a formal argument for the efficacy of HealthFlow’s self-evolution mechanism. Our goal is to show that as the agent completes
more tasks, its expected performance on future tasks monotonically improves.

Definitions. LetD be a stationary distribution of tasks𝑇 . Let 𝜋 (M) be the meta-agent’s planning policy, which depends on the experience
memoryM. The policy maps a task 𝑇 to a plan 𝑃 . Let 𝑆 (𝑇, 𝑃) be a stochastic binary outcome function, where 𝑆 = 1 indicates task success
and 𝑆 = 0 indicates failure. The quality of a policy is its expected success rate over the task distribution:

𝑄 (𝜋 (M)) = E𝑇∼D [𝑆 (𝑇, 𝜋 (M)(𝑇 ))] (5)
11
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Assumptions. Our proof relies on two idealized assumptions about the learning process to illustrate the mechanism’s potential in a
theoretical model:
(1) Effective Reflection:When a task 𝑇 is solved successfully, the reflector agent 𝐴𝑅 generates a new experience 𝐸𝑛𝑒𝑤 . We assume this

experience captures a meaningful, generalizable aspect of the solution. Thus, for any future task 𝑇 ′ that is "similar" to 𝑇 (i.e., for which
𝐸𝑛𝑒𝑤 is relevant), using this experience will not decrease, and may increase, the probability of success. Formally, letM′ =M ∪ {𝐸𝑛𝑒𝑤 }.
Then for any 𝑇 ′,

P(𝑆 (𝑇 ′, 𝜋 (M′) (𝑇 ′)) = 1) ≥ P(𝑆 (𝑇 ′, 𝜋 (M)(𝑇 ′)) = 1) (6)

(2) Effective Retrieval: The meta-agent 𝐴𝑀 can reliably retrieve relevant experiences. An irrelevant experience does not negatively impact
planning for a given task.

Theorem. LetM𝑡 be the experience memory after 𝑡 successful task completions. Under the assumptions of Effective Reflection and
Effective Retrieval, the quality of the planning policy is monotonically non-decreasing.

𝑄 (𝜋 (M𝑡+1)) ≥ 𝑄 (𝜋 (M𝑡 )) (7)

Proof. At step 𝑡 , the agent successfully completes a task 𝑇𝑡 , generating a new experience 𝐸𝑡+1. The memory is updated to M𝑡+1 =

M𝑡 ∪ {𝐸𝑡+1}. We want to compare 𝑄 (𝜋 (M𝑡+1)) with 𝑄 (𝜋 (M𝑡 )).

𝑄 (𝜋 (M𝑡+1)) = E𝑇∼D [𝑆 (𝑇, 𝜋 (M𝑡+1) (𝑇 ))] (8)

=

∫
𝑇 ∈D

P(𝑆 (𝑇, 𝜋 (M𝑡+1) (𝑇 )) = 1)𝑝 (𝑇 )𝑑𝑇 (9)

By the law of total expectation, we can condition on whether a task 𝑇 is relevant to the new experience 𝐸𝑡+1 or not. Let D𝑟𝑒𝑙 ⊂ D be the
subset of tasks for which 𝐸𝑡+1 is relevant, and D𝑖𝑟𝑟𝑒𝑙 = D \ D𝑟𝑒𝑙 .

From our assumptions:
• For any 𝑇 ′ ∈ D𝑟𝑒𝑙 , by Effective Reflection (Assumption 1), the retrieval of 𝐸𝑡+1 will lead to a plan that is at least as likely to succeed:

P(𝑆 (𝑇 ′, 𝜋 (M𝑡+1) (𝑇 ′)) = 1) ≥ P(𝑆 (𝑇 ′, 𝜋 (M𝑡 ) (𝑇 ′)) = 1) (10)

• For any 𝑇 ′′ ∈ D𝑖𝑟𝑟𝑒𝑙 , by Effective Retrieval (Assumption 2), the new experience 𝐸𝑡+1 will not be retrieved or will be correctly identified as
irrelevant, so it does not affect the plan:

𝜋 (M𝑡+1) (𝑇 ′′) = 𝜋 (M𝑡 ) (𝑇 ′′) (11)

Therefore, the success probability remains unchanged:

P(𝑆 (𝑇 ′′, 𝜋 (M𝑡+1) (𝑇 ′′)) = 1) = P(𝑆 (𝑇 ′′, 𝜋 (M𝑡 ) (𝑇 ′′)) = 1) (12)

Since the probability of success is greater than or equal to the previous probability for all tasks 𝑇 ∈ D, the expectation over the entire
distribution must also be greater than or equal.∫

𝑇 ∈D
P(𝑆 (𝑇, 𝜋 (M𝑡+1)) = 1)𝑝 (𝑇 )𝑑𝑇 ≥

∫
𝑇 ∈D

P(𝑆 (𝑇, 𝜋 (M𝑡 )) = 1)𝑝 (𝑇 )𝑑𝑇 (13)

Thus, 𝑄 (𝜋 (M𝑡+1)) ≥ 𝑄 (𝜋 (M𝑡 )). The inequality becomes strict if the set of relevant future tasks D𝑟𝑒𝑙 has a non-zero measure and the
experience 𝐸𝑡+1 provides a strictly positive benefit for at least some of those tasks. This concludes the proof. We acknowledge that the
assumptions of perfect reflection and retrieval are strong simplifications. In practice, a poorly generalized experience could potentially
degrade performance, and irrelevant context might not be perfectly ignored.

E Dataset and Benchmark Details
E.1 EHRFlowBench Construction Details
EHRFlowBench is designed to provide a rigorous and realistic testbed for evaluating AI agents on complex healthcare research tasks. Its
construction follows a systematic, two-stage procedure to ensure task relevance, diversity, and grounding in established scientific literature.

Stage 1: Candidate paper screening. The process begins with a comprehensive collection of research papers from top-tier AI and data
mining conferences published between 2020 and 2025: AAAI, ICLR, ICML, NeurIPS, IJCAI, KDD, and WWW. This initial pool comprises
51,280 papers, with a breakdown by conference and year detailed in Table 5. To identify papers relevant to AI applications on EHR data, a
common focus in real-world healthcare research, we employ a majority-voting ensemble of three powerful LLMs (DeepSeek-V3, DeepSeek-R1,
and Qwen3-235B) to classify paper titles based on their relevance to the EHR field. The prompt used for this classification is detailed below.
This automated screening yields 162 candidate papers.

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

HealthFlow: A Self-Evolving AI Agent with Meta Planning for Autonomous Healthcare Research

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 5: Number of papers collected from selected conferences (2020–2025) for the initial screening phase of EHRFlowBench
construction.

Conference 2020 2021 2022 2023 2024 2025 Total

AAAI 1646 1654 1319 1578 2331 3028 11556
IJCAI 779 723 862 851 1048 – 4263
KDD 217 239 253 310 408 185 1612
WWW 219 355 367 402 428 440 2211
NeurIPS 1898 2334 2671 3218 4035 – 14156
ICML 1085 1183 1234 1828 2610 – 7940
ICLR 687 860 1094 1573 2260 3068 9542

Sum 6531 7348 7800 9760 13120 6721 51280

Prompt for LLM-based screening of paper titles.

You are an AI research assistant specializing in scientific literature. Your task is to identify research papers focused on applying AI to Electronic Health

Records (EHR).

**Classification Criteria:**
A paper is **relevant (1)** if its title indicates the use of AI, machine learning, or data science techniques on data explicitly from **Electronic Health

Records (EHR)**. This includes:
- Clinical notes (free-text)
- Structured data (diagnosis codes like ICD, procedure codes)
- Time-series data from EHR (lab results, vital signs)

A paper is **NOT relevant (0)** if the title suggests a focus on:
- Medical Imaging (e.g., MRI, CT scans, X-rays, pathology slides)
- Genomics, proteomics, or any '-omics' data.
- Public health policy, hospital administration, or bioinformatics without direct patient-level EHR data analysis.
- Drug discovery or molecular modeling.
- Signal processing of physiological signals like ECG, EEG, unless contextually tied to an EHR system analysis.
- The term "administrative claims" or "billing data" alone, as this often lacks clinical depth.

**Your Task:**
Review the following list of paper titles.

---
{{numbered_titles}}
---

**Output Format:**
Respond with a single, valid JSON object. This object must have one key: "selected_indices". The value must be an array of integers representing the 1-based

index of the titles you identified as relevant.

**Example:**
If you determine that papers 2, 5, and 19 are relevant, your response MUST be exactly:
```json
{"selected_indices": [2, 5, 19]}
```
Do not provide any explanations, apologies, or any text outside of the JSON object.

Subsequently, these candidates undergo a manual review by human experts, who verify their relevance and methodology. This step
culminates in a final set of 118 high-quality seed papers for task extraction, which are enumerated below.

The complete list of 118 seed papers selected for EHRFlowBench task extraction.

1. [AAAI, 2020] Generative Adversarial Regularized Mutual Information Policy Gradient Framework for Automatic Diagnosis
2. [AAAI, 2020] AdaCare: Explainable Clinical Health Status Representation Learning via Scale-Adaptive Feature Extraction and Recalibration
3. [AAAI, 2020] ConCare: Personalized Clinical Feature Embedding via Capturing the Healthcare Context
4. [AAAI, 2020] DeepAlerts: Deep Learning Based Multi-Horizon Alerts for Clinical Deterioration on Oncology Hospital Wards
5. [AAAI, 2020] Learning the Graphical Structure of Electronic Health Records with Graph Convolutional Transformer
6. [AAAI, 2020] Deep Mixed Effect Model Using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare
7. [AAAI, 2020] Learning Conceptual-Contextual Embeddings for Medical Text
8. [AAAI, 2020] Understanding Medical Conversations with Scattered Keyword Attention and Weak Supervision from Responses
9. [AAAI, 2020] ICD Coding from Clinical Text Using Multi-Filter Residual Convolutional Neural Network
10. [AAAI, 2020] A System for Medical Information Extraction and Verification from Unstructured Text
11. [AAAI, 2021] GRASP: Generic Framework for Health Status Representation Learning Based on Incorporating Knowledge from Similar Patients
12. [AAAI, 2021] Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Learning
13. [AAAI, 2021] ESCAPED: Efficient Secure and Private Dot Product Framework for Kernel-based Machine Learning Algorithms with Applications in Healthcare
14. [AAAI, 2021] MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records
15. [AAAI, 2021] MTAAL: Multi-Task Adversarial Active Learning for Medical Named Entity Recognition and Normalization
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16. [AAAI, 2021] Clinical Temporal Relation Extraction with Probabilistic Soft Logic Regularization and Global Inference
17. [AAAI, 2022] Diaformer: Automatic Diagnosis via Symptoms Sequence Generation
18. [AAAI, 2022] Context-Aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs
19. [AAAI, 2022] Clustering Interval-Censored Time-Series for Disease Phenotyping
20. [AAAI, 2023] Heterogeneous Graph Learning for Multi-Modal Medical Data Analysis
21. [AAAI, 2023] KerPrint: Local-Global Knowledge Graph Enhanced Diagnosis Prediction for Retrospective and Prospective Interpretations
22. [AAAI, 2023] Multi-Label Few-Shot ICD Coding as Autoregressive Generation with Prompt
23. [AAAI, 2023] Estimating Treatment Effects from Irregular Time Series Observations with Hidden Confounders
24. [AAAI, 2023] Estimating Average Causal Effects from Patient Trajectories
25. [AAAI, 2023] Causal Recurrent Variational Autoencoder for Medical Time Series Generation
26. [AAAI, 2023] MHCCL: Masked Hierarchical Cluster-Wise Contrastive Learning for Multivariate Time Series
27. [AAAI, 2023] Forecasting with Sparse but Informative Variables: A Case Study in Predicting Blood Glucose
28. [AAAI, 2024] PromptMRG: Diagnosis-Driven Prompts for Medical Report Generation
29. [AAAI, 2024] Automatic Radiology Reports Generation via Memory Alignment Network
30. [AAAI, 2024] KG-TREAT: Pre-training for Treatment Effect Estimation by Synergizing Patient Data with Knowledge Graphs
31. [AAAI, 2024] Inducing Clusters Deep Kernel Gaussian Process for Longitudinal Data
32. [AAAI, 2024] ConSequence: Synthesizing Logically Constrained Sequences for Electronic Health Record Generation
33. [AAAI, 2024] IGAMT: Privacy-Preserving Electronic Health Record Synthesization with Heterogeneity and Irregularity
34. [AAAI, 2024] IVP-VAE: Modeling EHR Time Series with Initial Value Problem Solvers
35. [AAAI, 2024] DrFuse: Learning Disentangled Representation for Clinical Multi-Modal Fusion with Missing Modality and Modal Inconsistency
36. [AAAI, 2024] Large Language Models Are Clinical Reasoners: Reasoning-Aware Diagnosis Framework with Prompt-Generated Rationales
37. [AAAI, 2024] Collaborative Synthesis of Patient Records through Multi-Visit Health State Inference
38. [AAAI, 2025] DAMPER: A Dual-Stage Medical Report Generation Framework with Coarse-Grained MeSH Alignment and Fine-Grained Hypergraph Matching
39. [AAAI, 2025] Memorize and Rank: Elevating Large Language Models for Clinical Diagnosis Prediction
40. [AAAI, 2025] DECT: Harnessing LLM-assisted Fine-Grained Linguistic Knowledge and Label-Switched and Label-Preserved Data Generation for Diagnosis of

Alzheimer's Disease
41. [AAAI, 2025] Medical Manifestation-Aware De-Identification
42. [ICLR, 2024] GraphCare: Enhancing Healthcare Predictions with Personalized Knowledge Graphs.
43. [ICLR, 2024] Diagnosing Transformers: Illuminating Feature Spaces for Clinical Decision-Making.
44. [ICLR, 2024] A Flexible Generative Model for Heterogeneous Tabular EHR with Missing Modality.
45. [ICLR, 2024] Graph Transformers on EHRs: Better Representation Improves Downstream Performance.
46. [ICLR, 2025] Small Models are LLM Knowledge Triggers for Medical Tabular Prediction.
47. [ICLR, 2025] Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts.
48. [ICML, 2020] BoXHED: Boosted eXact Hazard Estimator with Dynamic covariates.
49. [ICML, 2020] Temporal Phenotyping using Deep Predictive Clustering of Disease Progression.
50. [ICML, 2020] DeepCoDA: personalized interpretability for compositional health data.
51. [ICML, 2021] Neighborhood Contrastive Learning Applied to Online Patient Monitoring.
52. [ICML, 2022] Locally Sparse Neural Networks for Tabular Biomedical Data.
53. [ICML, 2022] Learning of Cluster-based Feature Importance for Electronic Health Record Time-series.
54. [ICML, 2023] Improving Medical Predictions by Irregular Multimodal Electronic Health Records Modeling.
55. [ICML, 2023] Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series.
56. [ICML, 2024] Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources.
57. [ICML, 2024] Reservoir Computing for Short High-Dimensional Time Series: an Application to SARS-CoV-2 Hospitalization Forecast.
58. [ICML, 2024] Exploiting Negative Samples: A Catalyst for Cohort Discovery in Healthcare Analytics.
59. [ICML, 2024] ED-Copilot: Reduce Emergency Department Wait Time with Language Model Diagnostic Assistance.
60. [ICML, 2024] ProtoGate: Prototype-based Neural Networks with Global-to-local Feature Selection for Tabular Biomedical Data.
61. [IJCAI, 2020] A Label Attention Model for ICD Coding from Clinical Text
62. [IJCAI, 2020] The Graph-based Mutual Attentive Network for Automatic Diagnosis
63. [IJCAI, 2020] Automatic Emergency Diagnosis with Knowledge-Based Tree Decoding
64. [IJCAI, 2020] Learning Latent Forests for Medical Relation Extraction
65. [IJCAI, 2020] Generalized Zero-Shot Text Classification for ICD Coding
66. [IJCAI, 2021] Cooperative Joint Attentive Network for Patient Outcome Prediction on Irregular Multi-Rate Multivariate Health Data
67. [IJCAI, 2021] AMA-GCN: Adaptive Multi-layer Aggregation Graph Convolutional Network for Disease Prediction
68. [IJCAI, 2021] Collaborative Graph Learning with Auxiliary Text for Temporal Event Prediction in Healthcare
69. [IJCAI, 2021] Multi-series Time-aware Sequence Partitioning for Disease Progression Modeling
70. [IJCAI, 2021] A Novel Sequence-to-Subgraph Framework for Diagnosis Classification
71. [IJCAI, 2022] Cumulative Stay-time Representation for Electronic Health Records in Medical Event Time Prediction
72. [IJCAI, 2022] ``My nose is running.'' ``Are you also coughing?'': Building A Medical Diagnosis Agent with Interpretable Inquiry Logics
73. [IJCAI, 2022] Chronic Disease Management with Personalized Lab Test Response Prediction
74. [IJCAI, 2022] Data-Efficient Algorithms and Neural Natural Language Processing: Applications in the Healthcare Domain
75. [IJCAI, 2023] Hierarchical Apprenticeship Learning for Disease Progression Modeling
76. [IJCAI, 2023] A Diffusion Model with Contrastive Learning for ICU False Arrhythmia Alarm Reduction
77. [IJCAI, 2023] VecoCare: Visit Sequences-Clinical Notes Joint Learning for Diagnosis Prediction in Healthcare Data
78. [IJCAI, 2024] Predictive Modeling with Temporal Graphical Representation on Electronic Health Records
79. [IJCAI, 2024] Multi-TA: Multilevel Temporal Augmentation for Robust Septic Shock Early Prediction
80. [IJCAI, 2024] MediTab: Scaling Medical Tabular Data Predictors via Data Consolidation, Enrichment, and Refinement
81. [KDD, 2020] Hierarchical Attention Propagation for Healthcare Representation Learning
82. [KDD, 2020] INPREM: An Interpretable and Trustworthy Predictive Model for Healthcare
83. [KDD, 2020] DETERRENT: Knowledge Guided Graph Attention Network for Detecting Healthcare Misinformation
84. [KDD, 2020] HiTANet: Hierarchical Time-Aware Attention Networks for Risk Prediction on Electronic Health Records
85. [KDD, 2020] Identifying Sepsis Subphenotypes via Time-Aware Multi-Modal Auto-Encoder
86. [KDD, 2020] HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in Intensive Care Units
87. [KDD, 2022] M3Care: Learning with Missing Modalities in Multimodal Healthcare Data
88. [KDD, 2023] Granger Causal Chain Discovery for Sepsis-Associated Derangements via Continuous-Time Hawkes Processes
89. [KDD, 2023] MedLink: De-Identified Patient Health Record Linkage
90. [KDD, 2023] Warpformer: A Multi-scale Modeling Approach for Irregular Clinical Time Series
91. [KDD, 2024] FlexCare: Leveraging Cross-Task Synergy for Flexible Multimodal Healthcare Prediction
92. [KDD, 2024] ProtoMix: Augmenting Health Status Representation Learning via Prototype-based Mixup
93. [KDD, 2024] Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models
94. [NeurIPS, 2020] Learning to Select Best Forecast Tasks for Clinical Outcome Prediction
95. [NeurIPS, 2021] Medical Dead-ends and Learning to Identify High-Risk States and Treatments
96. [NeurIPS, 2021] Auto-Encoding Knowledge Graph for Unsupervised Medical Report Generation
97. [NeurIPS, 2021] Closing the loop in medical decision support by understanding clinical decision-making: A case study on organ transplantation
98. [NeurIPS, 2023] Contrast Everything: A Hierarchical Contrastive Framework for Medical Time-Series
99. [NeurIPS, 2023] Temporal Causal Mediation through a Point Process: Direct and Indirect Effects of Healthcare Interventions
100. [NeurIPS, 2023] Towards Semi-Structured Automatic ICD Coding via Tree-based Contrastive Learning
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101. [NeurIPS, 2024] Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification
102. [NeurIPS, 2024] SMART: Towards Pre-trained Missing-Aware Model for Patient Health Status Prediction
103. [NeurIPS, 2024] Knowledge-Empowered Dynamic Graph Network for Irregularly Sampled Medical Time Series
104. [NeurIPS, 2024] Trajectory Flow Matching with Applications to Clinical Time Series Modelling
105. [NeurIPS, 2024] A teacher-teacher framework for clinical language representation learning
106. [NeurIPS, 2024] Automated Multi-Task Learning for Joint Disease Prediction on Electronic Health Records
107. [WWW, 2020] Text-to-SQL Generation for Question Answering on Electronic Medical Records
108. [WWW, 2020] StageNet: Stage-Aware Neural Networks for Health Risk Prediction
109. [WWW, 2020] CLARA: Clinical Report Auto-completion
110. [WWW, 2020] Learning Contextualized Document Representations for Healthcare Answer Retrieval
111. [WWW, 2020] DyCRS: Dynamic Interpretable Postoperative Complication Risk Scoring
112. [WWW, 2021] Online Disease Diagnosis with Inductive Heterogeneous Graph Convolutional Networks
113. [WWW, 2021] Distilling Knowledge from Publicly Available Online EMR Data to Emerging Epidemic for Prognosis
114. [WWW, 2023] SeqCare: Sequential Training with External Medical Knowledge Graph for Diagnosis Prediction in Healthcare Data
115. [WWW, 2023] Cross-center Early Sepsis Recognition by Medical Knowledge Guided Collaborative Learning for Data-scarce Hospitals
116. [WWW, 2025] ColaCare: Enhancing Electronic Health Record Modeling through Large Language Model-Driven Multi-Agent Collaboration
117. [WWW, 2025] MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
118. [WWW, 2025] Towards Multi-resolution Spatiotemporal Graph Learning for Medical Time Series Classification

Stage 2: Task extraction and curation. We then utilize an LLM (DeepSeek-V3) to extract evidence-grounded tasks from the full text of these
118 papers. For each paper, the LLM is prompted to generate a detailed task description, a primary research category (e.g., “Data Analysis”,
“Algorithm Implementation”), and a reference answer or expected outcome based on the paper’s findings. The prompt for this process is
provided below. This semi-automated process yields an initial pool of 585 tasks. To create a well-balanced and non-redundant benchmark,
these 585 tasks undergo a final manual curation phase. Our team of researchers consolidates semantically similar task types, discards
irrelevant or hard-to-evaluate categories (e.g., “Ablation Study”), and refines task descriptions for clarity. We apply stratified sampling to
ensure diversity across research domains, retaining all tasks from smaller categories and selecting a representative subset from larger ones.
This meticulous process results in the final EHRFlowBench, which contains 110 high-quality tasks: 100 for evaluation and 10 (one from each
of the 10 final categories) reserved for the training set used to bootstrap HealthFlow’s experience memory.

Prompt for LLM-based extraction of research tasks from papers.

### CORE MISSION ###
Please dissect the provided research paper and generate a series of self-contained, complex "mini-projects." These projects will be used to evaluate an

advanced AI agent's ability to implement algorithms and reproduce scientific findings. You will generate approximately 5 such projects.

### ABSOLUTE RULES FOR TASK GENERATION (NON-NEGOTIABLE) ###

1. **ZERO-REFERENCE MANDATE:** The task description MUST be entirely self-contained. It must NOT reference the source paper in any way (e.g., "as described in
Section 3," "using Equation (5)," "from Table 2"). The AI agent performing the task will NOT have access to the paper. All necessary information, formulas,
parameters, and constants must be explicitly defined within the `<task>`.

* **FAILURE EXAMPLE (DO NOT DO THIS):** "Implement the time-aware graph attention mechanism from equations (1)-(4)."
* **SUCCESS EXAMPLE (DO THIS):** "Implement a time-aware graph attention mechanism. Given a head entity \(c_h\), its neighbors \(N_h\), and a time
interval \(\tau\), compute the aggregated neighbor representation \(e_{N_h}\). First, compute the time embedding \(f_\tau = \tanh(W_f \tau + b_f)\). Then,
for each neighbor \(c_u \in N_h\), calculate the attention score \(\pi(c_h, r, c_u, \tau)\) using a feed-forward network: \(\text{FFN}(M_r e_h \| M_r e_u
\| f_\tau)\), where \(\|\|\) denotes concatenation. Normalize these scores using softmax to get \(\tilde{\pi}\). Finally, compute \(e_{N_h} = \sum_{c_u \in
N_h} \tilde{\pi}(c_h, r, c_u, \tau) e_u\). Use parameter dimensions: \(e_h, e_u \in \mathbb{R}^{100}\), \(M_r \in \mathbb{R}^{100 \times 100}\), \(W_f \in
\mathbb{R}^{64}\), \(b_f \in \mathbb{R}^{64}\)."

2. **MANDATORY LATEX FOR ALL MATH:** All mathematical variables, formulas, and expressions MUST be formatted using LaTeX syntax.
* For inline math, use `\( ... \)`. Example: The loss is calculated for each sample \(i\).
* For block/display math, use `\[ ... \]`. Example: \[ L_{\text{total}} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \]

3. **DIVERSE & SUBSTANTIAL TASKS:** Generate a variety of tasks covering different research stages (e.g., Cohort Definition, Feature Engineering, Model

Implementation, etc.). Each task should be a meaningful unit of work, not a trivial query.

4. **VERIFIABLE ANSWER:** The `<answer>` field must contain the specific, verifiable result from the paper that directly corresponds to the completion of the

task. The answer must also include a brief interpretation of the result's significance within the context of the study. Use LaTeX for any math in the answer.

### XML OUTPUT SPECIFICATION (STRICTLY ENFORCED) ###
Your entire output must be a single, valid XML block. Do not include any text, explanations, or markdown fences before or after the XML. The root element must

be `<response>`. Each task must be enclosed in an `<item>` tag with exactly these three child tags: `<category>`, `<task>`, and `<answer>`:

1. `<category>`: A descriptive category for the task.
2. `<task>`: The detailed, self-contained, imperative instructions for the AI agent, following all rules above. **All math must be in LaTeX.**
3. `<answer>`: The verifiable result from the paper. This should contain the specific value/outcome and a brief sentence explaining its context. **Any math

must be in LaTeX.**

--- BEGIN RESEARCH PAPER TEXT ---
{{paper_text}}
--- END RESEARCH PAPER TEXT ---

An example of a task extracted and curated for EHRFlowBench is provided below.
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Example task from the EHRFlowBench benchmark.

<item>
<category>Cohort Definition</category>
<task>
You are given the patient statistics for three distinct disease cohorts used in a risk prediction study. Your task is to perform a calculation for the

"Heart Failure" cohort.

**Cohort Data:**
1. **COPD Cohort:**

* Case (Positive) Patients: 7,314
* Control (Negative) Patients: 21,942

2. **Heart Failure Cohort:**
* Case (Positive) Patients: 3,080
* Control (Negative) Patients: 9,240

3. **Kidney Disease Cohort:**
* Case (Positive) Patients: 2,810
* Control (Negative) Patients: 8,430

**Instructions:**
1. Identify the data for the "Heart Failure" cohort.
2. Calculate the total number of patients in this cohort.
3. Calculate the control-to-case ratio for this cohort. Express the ratio as a single number (e.g., if there are 100 controls and 50 cases, the ratio is

2.0).
4. Report the average number of visits per patient for this cohort, which is given as 38.74.

</task>
<answer>
For the Heart Failure cohort:
- Total Patients: 3,080 (Case) + 9,240 (Control) = 12,320
- Control-to-Case Ratio: 9,240 / 3,080 = 3.0
- Average Visits Per Patient: 38.74

**Interpretation:** The dataset for Heart Failure is imbalanced with a 3:1 ratio of control to case patients. This is a common characteristic in medical

datasets and must be accounted for during model training and evaluation.
</answer>

</item>

E.2 External Datasets and Benchmarks Used
To ensure a comprehensive evaluation of HealthFlow’s capabilities, we utilize several publicly available datasets and benchmarks, each
targeting distinct aspects of medical reasoning and data analysis.

Motivation for dataset selection. Our selection of benchmarks is driven by the need to assess the multifaceted capabilities required for
autonomous healthcare research. EHRFlowBench serves as our primary benchmark for evaluating end-to-end, complex research workflows.
MedAgentBoard is chosen to test practical skills in structured EHR data processing and modeling. MedAgentsBench and the medical subset
of Humanity’s Last Exam (HLE) are included to measure foundational medical knowledge and expert-level reasoning, which are prerequisites
for high-quality analysis. Finally, CureBench is incorporated to specifically evaluate tool-augmented reasoning in the context of clinical
therapeutic decision-making. This combination allows for a holistic assessment of our agent, from core knowledge to practical application
and complex research execution.

Dataset descriptions and availability. All datasets employed in this paper are publicly available or accessible upon request and are used
under their respective data use agreements.
• EHRFlowBench: This benchmark is introduced in this work. Details are provided in Section E.1. The complete dataset is available in the

GitHub repository.
• MedAgentBoard [53]: A benchmark designed to evaluate AI agents on practical, multi-step data science tasks using real-world EHR data

(MIMIC-IV [21, 22] and TJH [47]). It assesses the entire pipeline from data extraction and cohort definition to predictive modeling and
report generation. The benchmark is publicly available on GitHub.

• MedAgentsBench [42]: A benchmark consisting of challenging multiple-choice questions designed to test the medical knowledge and
clinical reasoning abilities of AI agents across various medical specialties. We randomly select 100 questions from its “hard set” using a
random seed of 42.

• Humanity’s Last Exam (HLE) [29]: A collection of expert-level problems designed to be exceptionally challenging for current AI
systems. We use 45 text-only questions from the “Medicine” and “Health Science” subcategories within its “Biology/Medicine” category to
assess specialized domain reasoning under difficult conditions.

• CureBench [10]: A benchmark for therapeutic decision-making that tasks agents with complex reasoning over patients, diseases, and
drugs, requiring the use of external biomedical tools like FDA databases and PubMed. The data can be downloaded from the Data section
of the associated Kaggle competition, accessible via the official website: https://curebench.ai/.
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F Experimental Setup Details
F.1 Computing Infrastructure
All experiments are conducted on a consistent hardware and software platform to ensure reproducibility.
• Hardware: Apple Mac Studio with an M3 Ultra chip and 512 GB of unified memory.
• Software: We develop HealthFlow using Python 3.12. The environment is managed using uv, with all dependencies specified in a

pyproject.toml file for reproducibility.
• Locally deployed models: The HuatuoGPT-o1 (QuantFactory/HuatuoGPT-o1-7B-GGUF (8-bit quantized version)) and MedGemma

(google/medgemma-27b-text-it (8-bit quantized version)) models are deployed and run locally using LMStudio on the Mac Studio.
• Online LLM APIs: Calls to online LLM APIs (e.g., DeepSeek, Qwen, Claude, Kimi, and GLM) utilize their respective official platforms. For

models that support it, we leverage an OpenAI-compatible API interface for standardized communication.

F.2 Hyperparameter Details
The hyperparameters for our framework are selected to balance performance, computational cost, and stability, based on preliminary
experiments on an internal validation set.

Key hyperparameters for HealthFlow are tuned as follows:
• Maximum retries: We test values of 1, 2, and 3. A value of 1 corresponds to a single attempt with no self-correction. Our experiments

indicate that a maximum of 3 trials provides a good balance between performance and cost, allowing the agent sufficient opportunity to
correct initial failures without excessive computational overhead.

• Success threshold: The evaluator agent as an LLM judge to assigns the evaluation score, where this parameter determines the minimum
evaluation score (on a 1.0–10.0 scale) required to consider a task successful and halt the retry loop. We evaluate thresholds of 6.0 and
8.0. We select a threshold of 6.0, as a value of 8.0 leads to an unnecessarily high number of retries for tasks that are already functionally
complete, thereby reducing overall efficiency.

For all external LLM API calls within our framework and all baselines, we use the default parameters provided by the respective services
(e.g., for temperature, top_p, and max_tokens). This approach ensures that our evaluation focuses on the performance of the agentic
architecture rather than on the effects of hyperparameter tuning for the backbone models.

F.3 Implementation of Baseline Methods
For a fair and rigorous comparison, all baseline methods are configured to the best of our ability according to their original papers and public
implementations. Unless otherwise specified, all agent frameworks are powered by the DeepSeek-V3 model to normalize for the effect of the
backbone LLM and isolate the performance of the agentic architecture itself.

General and medical LLMs. DeepSeek-V3 [25] and DeepSeek-R1 [14] are accessed via their official APIs. HuatuoGPT-o1 [6] and
MedGemma [35] are run locally using LMStudio. These models are prompted with the raw task description and are evaluated based
on their direct, single-turn responses without any agentic scaffolding.

Multi-agent collaboration frameworks. We use the official open-source implementations for MedAgents [43], MDAgents [23], and Co-
laCare [46]. As these frameworks are designed primarily for conversational QA or summarization and often lack robust, sandboxed code
execution environments, we adapt their inputs to be the research tasks from our benchmarks and evaluate their final textual outputs.

General and biomedical agent frameworks. All general and medical LLMs, as well as multi-agent collaboration frameworks, lack the
capability to read and execute code. Therefore, for open-ended tasks such as those in EHRFlowBench and MedAgentBoard, we evaluate only
their generated code and answers.

We use the official repositories for AFlow [50], Biomni [17], and STELLA [20], reproducing results according to the instructions provided
in their README files. For Alita [30], whose official implementation is not public, we adopt the widely used open-source community
version, OpenAlita [33]. All frameworks are configured to use DeepSeek-V3 as their primary reasoning and execution model to ensure a fair
comparison with HealthFlow.

F.4 Evaluation Metrics Details
We employ a combination of automated metrics and LLM-based evaluation to assess agent performance across different benchmarks.

Standard metrics. For benchmarks with ground-truth answers, we use standard metrics.
• Accuracy: This is used for MedAgentsBench and HLE, where tasks are multiple-choice or have a binary correct/incorrect answer. It is the

percentage of correctly answered questions. We first use LLM-based extraction to obtain the predicted answer and then apply the official
evaluation prompt to determine correctness.

• Success rate: The primary metric for MedAgentBoard. A task is considered successful if the agent produces the correct final numerical
answer or a functionally correct artifact (e.g., a plot), as verified against the ground-truth solution through manual human evaluation.
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LLM-as-a-judge evaluation.
• For EHRFlowBench, we use an ensemble of five diverse LLMs (DeepSeek-V3, DeepSeek-R1, Claude-4-Sonnet, Kimi-K2, GLM-4.5) to

mitigate single-model bias. Each judge scores a solution on a 1–5 scale across three dimensions: methodology soundness (70% weight),
presentation quality (20%), and artifact generation (10%). The final score is the weighted average of the mean scores from the five judges.
The evaluation prompt is detailed below.

Evaluation prompt for EHRFlowBench.

**1. method_soundness**

Evaluate the overall quality of the solution path. Assess the chosen method's soundness and correctness. More importantly, **this score heavily weights the
quality and completeness of the agent's justification for its approach**. A well-reasoned, comprehensive report that discusses problem framing, results, and
limitations should score highly, even if its method intelligently deviates from the reference answer. The reference serves as a benchmark, not a strict
mandate.

* **5 (Exemplary):** **MUST meet all criteria for a score of 4.** In addition, the **Methodology Justification** is exceptionally insightful, comparing

the approach to viable alternatives and providing a profound analysis of the **generated results** and limitations.
* **4 (Strong):** **A score of 4 is IMPOSSIBLE without clear evidence of successful execution** (explicit statements OR output files like `.png`/`.csv` in

`{file_structure_info}`). The response must also contain a true **Methodology Justification** (as defined above), not just a code explanation.
* **3 (Acceptable):** **This is the ABSOLUTE MAXIMUM score for any solution that LACKS execution evidence.** To achieve this score, the response MUST

provide a strong **Methodology Justification** (the "Why"). It presents a well-reasoned strategic plan, even if it's not proven with results.
* **2 (Weak):** **Assign this score if a response's justification consists ONLY of code and a Code Explanation (the "What" and "How"), like the provided
example.** This score is the correct rating for a submission that presents a function or script but fails to provide the strategic "Why" behind it. This
score also applies if the method is flawed or execution failed.
* **1 (Poor):** The method is fundamentally flawed or irrelevant, and there is no meaningful justification of any kind.

**2. presentation_quality**

Clarity, structure, and completeness of the final answer's explanation and formatting. Is it easy to read and understand?

* **5 (Exemplary):** The presentation is exceptionally clear, professional, and well-structured. It uses formatting, language, and structure to make

complex information easy to digest.
* **4 (Strong):** The presentation is clear, well-structured, and complete. It is easy to read and understand with only minor room for refinement.
* **3 (Acceptable):** The core message is communicated clearly and the structure is adequate. A reader can understand the answer, though it may have minor

issues with clarity, organization, or formatting.
* **2 (Weak):** The presentation is disorganized, unclear, or incomplete, making it difficult for the reader to follow.
* **1 (Poor):** The presentation is confusing, unstructured, or poorly formatted, failing to communicate the information effectively.

**3. artifact_generation**

Functionality, correctness, and completeness of generated files (e.g., code, plots, data). Are they usable and aligned with the task?

* **5 (Exemplary):** Artifacts are not only correct and well-organized into files but also demonstrate exemplary software engineering practices. The code

architecture is robust and clean (e.g., using functions/classes), well-commented, and easily understandable or reusable.
* **4 (Strong):** Generates correct and functional artifacts. The code is well-organized, logically structured, and is appropriately saved into distinct

files (e.g., `.py` for code, `.csv` for data).
* **3 (Acceptable):** Artifacts are generated and are largely functional. The code may require minor corrections to run, ript), but it successfully

implements the core logic.
* **2 (Weak):** Artifacts are generated but contain significant errors or are incomplete. This score recognizes the attempt to generate code but notes its

flaws.
* **1 (Poor):** Fails to generate the required artifacts.

**4. overall_score**

Your holistic assessment, **not a simple average**. A critical failure (score of 0 or 1) in one key area should heavily penalize the overall score.

Conversely, exceptional performance (4 or 5) in key areas should elevate it.

* **5 (Exemplary):** An exemplary performance (score of 5) on `solution_approach_justification` with at least strong performance (4) on other dimensions.

A model answer.
* **4 (Strong):** Strong performance (4 or higher) across all key dimensions, or an exemplary performance in one key area balanced by acceptable

performance elsewhere. A high-quality submission.
* **3 (Acceptable):** Meets expectations (score of 3) on all dimensions. A solid, complete solution with no major flaws.
* **2 (Weak):** Weak performance (score of 2) in one or more dimensions, especially `solution_approach_justification` or `artifact_generation`, but is not

a complete failure.
* **1 (Poor):** Contains a fundamental flaw or critical error (score of 1) in a key dimension, severely compromising the value of the submission.

• For MedAgentBoard, we use a single LLM (DeepSeek-V3) to provide a 1–5 score across four task-specific dimensions. Evaluators follow
detailed scoring rubrics customized for each task category, as detailed in the prompts below.
– Data extraction and statistical analysis: Accuracy of data selection, transformation logic, handling of missing values, and appropri-

ateness of statistical methods.

Evaluation prompt for data extraction and statistical analysis in MedAgentBoard.

### 1. Correctness of Data Selection (1-5 points)
- **5 (Perfect):** The selected data subset (rows and columns) is **exactly** what is required by the task and perfectly matches the standard answer.
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- **4 (Minor Deviation):** The core data is correct, but there are minor discrepancies, such as an extra non-essential column or a slightly different but

still valid filter condition.
- **3 (Partial Match):** The selected data has some correct elements but misses significant portions of required data or includes a large amount of

incorrect data. E.g., correct rows but wrong columns.
- **2 (Incorrect):** The data selection logic is fundamentally flawed. The resulting dataset is largely irrelevant to the task.
- **1 (Critically Flawed):** No data is selected, or the selected data is completely wrong.

### 2. Transformation Logic (1-5 points)
- **5 (Perfect):** All data transformations (e.g., calculations, aggregations, reshaping) are implemented correctly and efficiently, yielding results

identical to the standard answer.
- **4 (Mostly Correct):** The logic is sound and achieves the correct outcome, but with minor inefficiencies or stylistic differences from the ideal

implementation. The final numbers are correct.
- **3 (Partially Correct):** The transformation logic contains errors that lead to partially incorrect results. For example, a calculation is wrong, or

an aggregation is performed on the wrong group.
- **2 (Incorrect):** The transformation logic is fundamentally incorrect and does not produce the required output format or values.
- **1 (Critically Flawed):** The code for transformation is non-functional, absent, or completely irrelevant.

### 3. Handling of Missing Values (1-5 points)
- **5 (Perfect):** Missing values are handled appropriately as dictated by the task or best practices (e.g., imputation, removal) and aligns perfectly

with the standard answer's approach.
- **4 (Acceptable Alternative):** An alternative, valid method for handling missing values was used that still leads to a correct or very similar outcome.
- **3 (Suboptimal Handling):** Missing values were handled, but in a way that negatively impacts the final result or is not appropriate for the data type

(e.g., filling categorical data with 0).
- **2 (Incorrect Handling):** The method for handling missing values is wrong or leads to significant errors in the analysis.
- **1 (Critically Flawed):** Missing values were completely ignored when they should have been handled, or the handling method caused the process to fail.

### 4. Appropriateness of Statistical Methods (1-5 points)
- **5 (Perfect):** The statistical methods used (e.g., mean, median, standard deviation, t-test) are perfectly appropriate for the data and the question,

matching the standard answer.
- **4 (Mostly Appropriate):** The chosen statistical method is valid and yields a correct conclusion, though a slightly more optimal method might exist.
- **3 (Partially Appropriate):** A statistical method was used, but it was not the right choice for the data distribution or task, leading to potentially

misleading results.
- **2 (Inappropriate):** The statistical method is clearly wrong (e.g., using mean on ordinal data, correlation on non-linear data).
- **1 (Critically Flawed):** No statistical analysis was performed, or a completely nonsensical method was applied.

– Predictive modeling: Suitability of model choice, soundness of training procedures, inclusion of relevant evaluation metrics, and
proper validation practices.

Evaluation prompt for predictive modeling in MedAgentBoard.

### 1. Appropriateness of Model Selection (1-5 points)
- **5 (Perfect):** The chosen model is highly appropriate for the data type, task (e.g., classification, regression), and complexity, aligning with the

standard answer.
- **4 (Acceptable):** The model is a reasonable choice and works, but a more standard or higher-performing model is available and used in the standard

answer.
- **3 (Suboptimal):** The chosen model is unconventional or ill-suited for the task, leading to poor performance or unnecessarily complex implementation.
- **2 (Incorrect):** The model type is wrong for the task (e.g., using a regression model for a classification task).
- **1 (Critically Flawed):** No model was selected, or a completely nonsensical choice was made.

### 2. Implementation of Training Procedures (1-5 points)
- **5 (Perfect):** The model training code is bug-free, efficient, and correctly implemented, including data splitting, feature preparation, and fitting.

It matches the standard answer's implementation.
- **4 (Mostly Correct):** The training procedure is correct, but with minor issues like suboptimal hyperparameter defaults or inefficient data handling.

The model trains successfully.
- **3 (Partially Correct):** The training code has errors that allow it to run but produce a poorly trained model (e.g., data leakage, wrong feature

scaling).
- **2 (Incorrect):** The training code has significant bugs that prevent the model from training correctly or at all.
- **1 (Critically Flawed):** The training code is completely non-functional or absent.

### 3. Inclusion of Necessary Evaluation Metrics (1-5 points)
- **5 (Perfect):** All relevant evaluation metrics for the task (e.g., AUC, F1-score for classification; R-squared, MSE for regression) are correctly

calculated and reported, matching the standard answer.
- **4 (Mostly Complete):** The primary metrics are reported, but some useful secondary metrics are missing.
- **3 (Partially Complete):** Some key metrics are missing, or the reported metrics are not the most appropriate for the task.
- **2 (Incorrect):** The wrong metrics are calculated (e.g., accuracy on a highly imbalanced dataset without other metrics), or they are calculated

incorrectly.
- **1 (Critically Flawed):** No evaluation metrics are provided.

### 4. Adherence to Proper Validation Practices (1-5 points)
- **5 (Perfect):** A proper validation strategy (e.g., train-test split, cross-validation) is used correctly, ensuring no data leakage and providing an

unbiased estimate of performance.
- **4 (Acceptable):** A simple train-test split is used correctly, where cross-validation might have been more robust. The validation is still sound.
- **3 (Flawed):** The validation practice has flaws, such as not stratifying a split on an imbalanced dataset or testing on data that was used in

training (leakage).
- **2 (Incorrect):** The concept of validation is misunderstood. For example, the model is evaluated on the training set.
- **1 (Critically Flawed):** There is no validation procedure at all.

– Data visualization: Correct application of visualization techniques, alignment with analytical goals, aesthetic clarity, and overall
readability.
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Evaluation prompt for data visualization in MedAgentBoard.

### 1. Correctness of Visualization Techniques (Code-based) (1-5 points)
- **5 (Perfect):** The agent's plotting code is logically identical to the standard answer's code. It selects the correct data, uses the right plot type

(e.g., bar, scatter), and correctly maps variables to axes.
- **4 (Mostly Correct):** The plotting code produces the same type of plot with the correct data, but may have minor differences in implementation (e.g.,

using a different library but achieving the same result).
- **3 (Partially Correct):** The code attempts to create the right kind of plot but makes significant errors, such as plotting the wrong variables, using

incorrect data aggregations, or choosing a plot type that obscures the insight.
- **2 (Incorrect):** The plotting code is fundamentally flawed and would produce a visualization that is misleading or completely different from the

required one.
- **1 (Critically Flawed):** The plotting code is non-functional, absent, or completely irrelevant.

### 2. Alignment with Analytical Objectives (1-5 points)
- **5 (Perfect):** The visualization (as inferred from the code) directly and clearly answers the question posed in the task brief.
- **4 (Mostly Aligned):** The visualization is relevant but might not be the most effective way to show the specific insight required.
- **3 (Partially Aligned):** The visualization shows related data but does not directly address the core analytical objective of the task.
- **2 (Poorly Aligned):** The visualization is only tangentially related to the task.
- **1 (Critically Flawed):** The visualization is completely irrelevant to the analytical objective.

### 3. Aesthetic Quality and Readability (Inferred) (1-5 points)
- **5 (Perfect):** The code includes clear labels for the title, x-axis, and y-axis, and a legend if necessary. The implementation suggests a clean,

professional, and easy-to-read plot.
- **4 (Good):** The plot is mostly readable, but is missing one minor element like a title or a clear axis label.
- **3 (Acceptable):** The plot is generated, but the code lacks any labels, titles, or other elements that aid interpretation.
- **2 (Poor):** The code suggests a messy or confusing plot (e.g., overlapping labels, no clear differentiation of elements).
- **1 (Critically Flawed):** No effort is made to make the plot interpretable.

### 4. Correctness of File Generation (1-5 points)
- **5 (Perfect):** The agent correctly generated the required image file in the correct format (e.g., `output.png`).
- **4 (Minor Issue):** The file was generated in a different but still acceptable image format (e.g., a `.jpg` instead of a `.png`).
- **3 (Incorrect Format):** The output was saved in a non-image format (e.g., `.txt`, `.csv`).
- **2 (Failed Generation):** The code includes a save command, but it is incorrect and would fail, or the generated answer indicates a failure to save.
- **1 (Critically Flawed):** The required image file was **not generated at all**. This is a critical failure.

– Report generation: Completeness, coherence, factual accuracy, and clinical relevance of the synthesized findings.

Evaluation prompt for report generation in MedAgentBoard.

### 1. Completeness (1-5 points)
- **5 (Perfect):** The report addresses all parts of the task prompt, synthesizing all required pieces of information from the data. All key findings

from the standard answer are present.
- **4 (Mostly Complete):** The report covers the main findings but omits a minor detail or a secondary point.
- **3 (Partially Complete):** The report addresses some of the task requirements but misses major findings or sections. If no markdown file (MD file) is

generated, the maximum score is 3.
- **2 (Incomplete):** The report only touches on one aspect of the task and is largely incomplete.
- **1 (Critically Flawed):** The report is empty or does not attempt to address the task.

### 2. Accuracy (1-5 points)
- **5 (Perfect):** All statements, numbers, and conclusions in the report are factually correct and perfectly match the data and the standard answer.
- **4 (Mostly Accurate):** The report contains very minor inaccuracies that do not affect the overall conclusion (e.g., a slightly rounded number, a

trivial misstatement).
- **3 (Partially Accurate):** The report contains a mix of correct and incorrect information. Some of the stated facts or numbers are wrong, affecting

the validity of the conclusions.
- **2 (Inaccurate):** The majority of the report is factually incorrect. The numbers or statements fundamentally misrepresent the data.
- **1 (Critically Flawed):** The report is entirely fictional, hallucinatory, or contradictory to the data.

### 3. Coherence (1-5 points)
- **5 (Perfect):** The report is well-structured, logical, and easy to follow. It tells a clear story and connects findings together seamlessly.
- **4 (Good):** The report is coherent and understandable, but the structure or flow could be improved.
- **3 (Acceptable):** The report presents a series of facts but fails to synthesize them into a coherent narrative. The points are disconnected.
- **2 (Poor):** The report is rambling, disorganized, and difficult to understand.
- **1 (Critically Flawed):** The report is a jumble of incoherent sentences or bullet points.

### 4. Clinical Relevance of Conclusions (1-5 points)
- **5 (Perfect):** The conclusions drawn are not only accurate but also clinically relevant and insightful, directly aligning with the context of the

problem.
- **4 (Relevant):** The conclusions are relevant but may lack depth or fail to highlight the most critical clinical insight.
- **3 (Superficial):** The conclusions are factually correct but superficial, stating the obvious without providing any deeper interpretation or

clinical context.
- **2 (Irrelevant):** The conclusions drawn are not relevant to the clinical question at hand.
- **1 (Critically Flawed):** No conclusions are drawn, or they are nonsensical.
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G Detailed Case Studies
G.1 Case 1: Medically Informed Data Validation
In this case study, selected from the MedAgentBoard benchmark, the task is to create a scatter plot to visualize the relationship between
systolic blood pressure and diastolic blood pressure. The goal is to plot “systolic blood pressure” on the x-axis and “diastolic blood pressure”
on the y-axis to explore the correlation between these two vital signs across all records.

Phase 1: Experience-driven planning by the meta agent. Upon receiving the task, the meta agent does not immediately generate code. Its first
action is to query the persistent experience memory for relevant strategic knowledge. For this task, it retrieves several high-level heuristics
and warnings gleaned from previous, similar analyses, as shown below. These experiences highlight critical, non-obvious requirements for
handling clinical data, such as the need for early data validation and the removal of missing values to ensure analytical integrity.

Past experiences retrieved by the meta agent to inform strategic planning.

[
{
"type": "heuristic",
"category": "medical_data_cleaning",
"content": "For temporal analysis of clinical metrics in healthcare data, always filter out records with missing values in the target parameter before
aggregation or visualization. This ensures data integrity by preventing skewed results from incomplete data, enhancing reliability for similar requests
involving trend analysis like plotting lab values over time."

},
{
"type": "warning",
"category": "data_quality",
"content": "When handling healthcare data with multiple records per patient, failing to validate column existence early or neglecting to remove records
with missing values in target variables can lead to runtime failures or distorted visualizations; consistently implement these checks to uphold data
reliability in similar visualization requests."

},
{
"type": "warning",
"category": "data_validation",
"content": "In numerical threshold analyses for clinical data, always validate that columns are of numeric data types before performing comparisons.
Omission can cause runtime errors or incorrect interpretations if data contains non-numeric entries, potentially compromising analysis accuracy.
Incorporate data type checks early in processing to improve robustness and avoid pitfalls in similar healthcare tasks."

}
]

Informed by this retrieved knowledge, the meta agent synthesizes these abstract principles into a concrete, executable plan, which is
detailed next. This plan is not merely a sequence of commands; it is a strategic workflow that explicitly incorporates the lessons from past
experiences.

The strategic task plan generated by the meta agent.

# Scatter Plot of Systolic vs Diastolic Blood Pressure

## Relevant Context from Past Experience
* **Warning (data_quality):** When handling healthcare data, always validate column existence early and remove records with missing values in target

variables to prevent distorted visualizations.
* **Heuristic (medical_data_cleaning):** Filter out records with missing values in target parameters before visualization to ensure data integrity and

prevent skewed results.
* **Warning (data_validation):** Validate that columns are numeric before analysis to avoid runtime errors or incorrect interpretations.

## Step 1: Verify Data Path
`ls -l /PATH/TO/healthflow_datasets/ | grep MIMIC-IV.parquet`

## Step 2: Create Python Script
`touch blood_pressure_analysis.py`

## Step 3: Write Visualization Logic
```python
import pandas as pd
import matplotlib.pyplot as plt

# Load data and validate
file_path = 'PATH/TO/MIMIC-IV.parquet'
df = pd.read_parquet(file_path)

# Validate column existence and data types (as per context)
required_cols = ['Systolic blood pressure', 'Diastolic blood pressure']
for col in required_cols:

if col not in df.columns:
raise ValueError(f"Missing column: {col}")

if not pd.api.types.is_numeric_dtype(df[col]):
raise TypeError(f"Column '{col}' is non-numeric")
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# Filter missing values (as per context)
df_clean = df.dropna(subset=required_cols)

# Generate scatter plot
plt.figure(figsize=(10, 6))
plt.scatter(df_clean['Systolic blood pressure'], df_clean['Diastolic blood pressure'], alpha=0.5)
plt.title('Correlation: Systolic vs Diastolic Blood Pressure')
plt.xlabel('Systolic Blood Pressure (mmHg)')
plt.ylabel('Diastolic Blood Pressure (mmHg)')
plt.grid(True)
plt.savefig('bp_correlation_plot.png')
```

## Step 4: Execute Script
`python blood_pressure_analysis.py`

## Step 5: Confirm Output
`ls -l bp_correlation_plot.png`

Phase 2: Execution, evaluation, and self-correction. The executor agent proceeds to execute the plan, producing the execution log shown
below. The task completes successfully on the first attempt. Following execution, the evaluator agent provides prompt feedback, critically
assessing the process even in successful runs. It identifies inefficiencies in the plan, offering insights essential for the iterative self-correction
loop. In case of a task failure, this feedback guides the meta agent in retrying. The evaluator agent’s critique is shown below.

Execution log confirming successful generation of the visualization.

{
"success": true,
"return_code": 0,
"log": "STDOUT: Scatter plot created successfully! The visualization shows the relationship between systolic and diastolic blood pressure across 216,291

valid records from the MIMIC-IV dataset, with a correlation coefficient of 0.008. The plot has been saved as `bp_correlation_plot.png`.\n",
}

The evaluator agent’s critique.

{
"evaluation": {
"score": 9.0,
"feedback": "The scatter plot was correctly generated, but avoid adding unrequested elements like the correlation coefficient. Streamline the plan by

removing redundant steps (e.g., manual file verification with 'ls') and handle all checks within the script for efficiency.",
"reasoning": "Correctness is high (plot created as requested with sound data validation). Efficiency loses points for unnecessary steps like separate file

checks. Safety is excellent with robust error handling and no privacy violations in the output."
}

}

Phase 3: Meta-level evolution via knowledge synthesis. Upon successful completion, the full execution trace is passed to the reflector
agent, which drives HealthFlow’s long-term evolution by extracting abstract, generalizable knowledge. As shown below, the reflector agent
generates a new “workflow_pattern” and a “heuristic”. These new knowledge objects are not mere copies of the executed code; they are
generalized principles.

New generalizable experiences synthesized by the reflector agent.

[
{
"type": "workflow_pattern",
"category": "medical_data_visualization",
"content": "For user requests involving scatter plots to explore correlations between clinical metrics in healthcare datasets, implement this workflow: 1.
Load the dataset using a tool like pandas. 2. Validate the existence and numeric data type of the required columns early in the process. 3. Remove
records with missing values in the target parameters to ensure data integrity. 4. Generate the visualization with clear labels and save the output. This
pattern ensures reliable and accurate plots by preventing runtime errors and skewed results, as demonstrated in the successful blood pressure correlation
analysis.",
"source_task_id": "0dd7801e-7e09-48c6-abae-e03b44ca239c"

},
{
"type": "heuristic",
"category": "data_validation",
"content": "Always perform early validation of column presence and data types at the start of any healthcare data analysis task, especially for vital
signs in datasets like MIMIC-IV. This prevents runtime failures and ensures that subsequent operations, such as visualization or correlation
calculations, are based on valid, numeric data, enhancing the correctness and safety of the output for similar user requests.",
"source_task_id": "0dd7801e-7e09-48c6-abae-e03b44ca239c"

}
]
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Based on the generated code and execution log, HealthFlow synthesizes the final report (shown below) and saves the generated figure
(see Figure 9).

HealthFlow’s generated technical report: analysis of systolic and diastolic blood pressure correlation in the MIMIC-IV dataset.

## 1. Executive Summary
This report documents the successful execution of a computational task aimed at exploring the relationship between systolic and diastolic blood pressure
measurements within the MIMIC-IV dataset. The primary objective was to generate a scatter plot visualizing the correlation between these two vital signs,
accompanied by a quantitative assessment of their linear relationship. The AI agent implemented a robust Python script that loads the dataset, performs data
validation, filters incomplete records, and generates a high-quality scatter plot with annotated correlation metrics. The analysis revealed a weak positive
correlation (r = 0.008) across 216,291 valid records, suggesting minimal linear dependence between systolic and diastolic blood pressure in this cohort. The
primary achievement was the successful implementation of a reproducible and clinically interpretable visualization pipeline.

## 2. Problem Statement & Objectives
Blood pressure, comprising systolic (SBP) and diastolic (DBP) components, is a critical vital sign in clinical practice. While these metrics are often reported
together, their relationship across diverse patient populations remains an area of interest for both clinical and research applications. The core task was to
investigate this relationship by visualizing the pairwise distribution of SBP and DBP measurements and quantifying their linear correlation.

The specific objectives were:
1. **Data Loading & Validation**: Ensure the dataset contains the required SBP and DBP columns and handle missing data appropriately.
2. **Visualization**: Generate a scatter plot with SBP on the x-axis and DBP on the y-axis, incorporating professional formatting.
3. **Correlation Analysis**: Compute and display the Pearson correlation coefficient (r) to quantify the linear relationship.
4. **Output Generation**: Save the plot as a high-resolution image and log key statistics for reproducibility.

The task was purely implementation-focused, with the generated code serving as the primary deliverable. No additional hypothesis testing or advanced

statistical modeling was required.

## 3. Methodology & Implementation

### Technical Approach
The agent adopted a systematic workflow:
1. **Data Ingestion**: The MIMIC-IV dataset was loaded from a Parquet file, a columnar storage format optimized for analytical queries.
2. **Data Validation**: The script verified the presence of required columns (`Systolic blood pressure`, `Diastolic blood pressure`) and raised an informative

error if either was missing.
3. **Data Cleaning**: Records with missing SBP or DBP values were excluded to ensure analysis robustness.
4. **Visualization**: A scatter plot was generated using `matplotlib`, with transparency (`alpha=0.5`) to mitigate overplotting and point size (`s=10`)
adjusted for clarity.
5. **Annotation**: The Pearson correlation coefficient was calculated and overlaid on the plot, along with axis labels and a grid for interpretability.
6. **Output**: The plot was saved as a PNG file (300 DPI) with clinically reasonable axis limits (SBP: 50–250 mmHg; DBP: 20–150 mmHg).

### Implementation Details & Final Code
The final code (reproduced below) demonstrates adherence to best practices in scientific computing:

```python
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

# Load data
file_path = '/PATH/TO/MIMIC-IV.parquet'
df = pd.read_parquet(file_path)

# Validate required columns exist
required_cols = ['Systolic blood pressure', 'Diastolic blood pressure']
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:

raise ValueError(f"Missing columns: {missing_cols}")

# Filter out records with missing values in target variables
df_clean = df.dropna(subset=required_cols)

# Create scatter plot
plt.figure(figsize=(10, 8))
plt.scatter(df_clean['Systolic blood pressure'],

df_clean['Diastolic blood pressure'],
alpha=0.5,
s=10,
color='blue')

# Add labels and formatting
plt.title('Systolic vs Diastolic Blood Pressure Correlation', fontsize=14, pad=20)
plt.xlabel('Systolic Blood Pressure (mmHg)', fontsize=12)
plt.ylabel('Diastolic Blood Pressure (mmHg)', fontsize=12)
plt.grid(True, alpha=0.3)

# Add correlation coefficient
correlation = df_clean['Systolic blood pressure'].corr(df_clean['Diastolic blood pressure'])
plt.text(0.05, 0.95, f'r = {correlation:.3f}',

transform=plt.gca().transAxes,
fontsize=12,
verticalalignment='top',
bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))

# Set reasonable axis limits based on typical blood pressure ranges
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plt.xlim(50, 250)
plt.ylim(20, 150)

# Save plot
plt.savefig('bp_correlation_plot.png', dpi=300, bbox_inches='tight')
plt.close()

print(f"Scatter plot created successfully!")
print(f"Total records: {len(df)}")
print(f"Records with valid BP data: {len(df_clean)}")
print(f"Correlation coefficient: {correlation:.3f}")
```

**Key Design Choices**:
- **Data Validation**: Explicit checks for column existence prevent runtime errors and enhance reproducibility.
- **Alpha Transparency**: Mitigates overplotting in dense regions of the scatter plot.
- **Clinical Axis Limits**: Reflects physiologically plausible ranges, excluding outliers that could distort visualization.
- **Correlation Annotation**: The coefficient is displayed in a white-bordered box for legibility.

### Verification & Validation
Correctness was ensured through:
1. **Code Logic Review**: The script handles edge cases (e.g., missing data) and includes sanity checks.
2. **Output Inspection**: The generated plot (`bp_correlation_plot.png`) was verified for correct axis labeling, data representation, and annotation placement.
3. **Correlation Cross-Check**: The reported r-value (0.008) was manually confirmed using `df_clean.corr()`.

## 4. Results & Analysis

### Execution Overview
The task was completed successfully, producing:
- A scatter plot (`bp_correlation_plot.png`) visualizing SBP vs. DBP.
- Logs confirming execution (216,291 valid records processed).
- Auxiliary files (`execution_info.json`, `generated_file_manifest.md`) for provenance tracking.

### Key Outputs
The primary output was the functional Python script, which:
1. Loaded and validated the dataset.
2. Computed and visualized the SBP-DBP relationship.
3. Reported a near-zero correlation (r = 0.008), suggesting minimal linear dependence.

**Qualitative Analysis**:
- **Code Quality**: The script is well-structured, with comments explaining critical steps.
- **Robustness**: Includes error handling for missing data and columns.
- **Visual Clarity**: The plot uses appropriate formatting for clinical audiences.

## 5. Conclusion & Future Work

### Task Completeness
The agent **fully** delivered on all task requirements, providing a correct and reproducible implementation.

### Summary of Achievements
- Developed a reusable pipeline for blood pressure correlation analysis.
- Identified a weak correlation, prompting further investigation into non-linear relationships or subgroup analyses.

### Future Work
1. **Subgroup Analysis**: Stratify by patient demographics (e.g., age, sex) to uncover hidden patterns.
2. **Non-Linear Modeling**: Explore polynomial regression or clustering to capture complex relationships.
3. **Integration**: Embed this script into larger clinical analytics workflows.

This work exemplifies how targeted computational tasks can yield actionable insights in healthcare analytics while maintaining rigor and reproducibility.

In contrast, baseline agents lacking this experience-driven planning mechanism often fail to produce a useful or even correct result. To
illustrate this critical difference in capability, we present the outputs from several prominent baseline agents for the same task. As shown
in its output below, Biomni provides a descriptive summary of task completion. Although code is generated during the process, it is not
included in the final output. Only the image is shown, and its result deviates from the reference answer.

Biomni’s output.

<solution>
I have successfully created and saved a scatter plot showing the relationship between Systolic and Diastolic blood pressure from the MIMIC-IV dataset. Here are

the key details:

1. The plot has been saved as: `PATH/TO/blood_pressure_scatter.png`
2. The plot shows:

- X-axis: Systolic Blood Pressure (mmHg)
- Y-axis: Diastolic Blood Pressure (mmHg)
- Title: "Relationship Between Systolic and Diastolic Blood Pressure"

3. The plot includes all available records from the dataset, with each point representing one measurement.

The visualization allows for exploration of the correlation between these two important vital signs, which is clinically relevant for assessing cardiovascular

health.
</solution>
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a. Reference Answer b. HealthFlow’s Answer
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Alita

No figure generated.

Figure 9: Execution results of different methods on a MedAgentBoard task. (a) shows the reference answer; (b) presents the
output from HealthFlow; (c) and (d) display the responses from Biomni and STELLA, both of which fail to perform the essential
data validation step, while Alita fails to generate the required image.

As shown in its output below, STELLA similarly omits outlier handling in its final answer.

STELLA’s output.

import pandas as pd
import matplotlib.pyplot as plt
import pyarrow # Required for reading parquet files

# Load the dataset using the full, absolute path
file_path = '/PATH/TO/MIMIC-IV.parquet'
df = pd.read_parquet(file_path)

# Create the scatter plot
plt.figure(figsize=(10, 6))
plt.scatter(df['Systolic blood pressure'], df['Diastolic blood pressure'], alpha=0.5)
plt.title('Relationship Between Systolic and Diastolic Blood Pressure')
plt.xlabel('Systolic Blood Pressure (mmHg)')
plt.ylabel('Diastolic Blood Pressure (mmHg)')
plt.grid(True)

# Save the plot to a file
plot_filename = 'blood_pressure_scatter.png'
plt.savefig(plot_filename)
plt.close()

print(f"Scatter plot saved as '{plot_filename}' in the current directory.")

final_answer("Created a scatter plot of Systolic vs Diastolic blood pressure saved as 'blood_pressure_scatter.png' in the current directory.")
------------------------------------------------------------
Execution logs:
Scatter plot saved as 'blood_pressure_scatter.png' in the current directory.

Final answer: Created a scatter plot of Systolic vs Diastolic blood pressure saved as 'blood_pressure_scatter.png' in the current directory.

The output from Alita, shown below, highlights a more severe failure mode: hallucination of success. Despite multiple tool-call failures
clearly shown in the execution log, the agent’s final synthesizer module incorrectly concludes that the task is successful and confidently
provides a file path for the supposedly generated scatter plot.
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Alita’s output.

Starting intelligent analysis workflow...

**Coordinator:** ... → Routing to mcp_agent coordinator completed
**MCP Agent:** Analyzing query for tool requirements ... **Executing tools sequentially...**
**Executing:** read_parquet_file → Failed: read_parquet_file() takes from 0 to 1 positional arguments but 2 were given
**Executing:** extract_blood_pressure_data → Failed: extract_blood_pressure_data() takes from 0 to 1 positional arguments but 3 were given
**Executing:** create_scatter_plot → Success: Scatter plot saved to: /PATH/TO/experiment/heal...
**Executing:** save_plot_to_directory → Failed: save_plot_to_directory() takes from 0 to 1 positional arguments but 5 were given
...
mcp_agent completed
...
**Synthesizer:** Creating final answer...
Based on the tool results, the scatter plot visualizing the relationship between Systolic blood pressure (x-axis) and Diastolic blood pressure (y-axis) has

been successfully created and saved.

**Output Location:**
`'/PATH/TO/systolic_vs_diastolic_scatter.png`
...
**Final Answer:**
Based on the tool results, the scatter plot visualizing the relationship between Systolic blood pressure (x-axis) and Diastolic blood pressure (y-axis) has

been successfully created and saved.

**Output Location:**
`'/PATH/TO/systolic_vs_diastolic_scatter.png`
...

G.2 Case 2: Autonomous Research Simulation
This case study, selected from the EHRFlowBench benchmark, focuses on the task to evaluate the utility of synthetic electronic health record
(EHR) data by training a classifier and comparing its performance to that of a classifier trained on real data. The study is structured into four
stages:
(1) Data labeling: Two datasets are provided: one containing real EHR data and the other containing synthetic EHR data. Each record

includes a feature named DBP (diastolic blood pressure). We formulate a 4-class classification task by discretizing the DBP values into four
distinct categories, which serve as the classification labels.

(2) Classifier architecture: A CNN-LSTM model is implemented with the following architecture:
• The input data is first permuted.
• The permuted data is passed through three consecutive one-dimensional convolutional neural network (1D-CNN) layers.
• The output of the CNN layers is reshaped into a sequential format.
• The reshaped data is then passed into a bidirectional Long Short-Term Memory (Bi-LSTM) network, with a hidden size of 128.
• A final fully-connected layer with a softmax activation function outputs the class probabilities for the 4 DBP categories.

(3) Training and evaluation protocol:
• Train one classifier instance using the real EHR dataset.
• Train a second classifier instance using the synthetic EHR dataset.
• Use the same dataset size and identical hyperparameters for both training procedures.
• Train both models for exactly 1000 epochs.

(4) Reporting: Report both the final training loss and test accuracy for the classifier trained on real data, as well as for the classifier trained
on synthetic data.

This case highlights HealthFlow’s ability to handle open-ended research questions where no data is provided. The task requires evaluating
the utility of synthetic EHR data by training a classifier and comparing its performance to one trained on real data. This demands strict
adherence to a multi-stage experimental protocol, including data labeling, implementation of a specified CNN-LSTM architecture, and
rigorous training and evaluation constraints. The meta agent initially decomposes the task into a logical plan and generates the code
accordingly. In the first attempt, the agent successfully implements the CNN-LSTM model; however, the output does not meet the predefined
quality threshold. The evaluator agent critiques the result, triggering HealthFlow’s self-correction mechanism, as shown in the evaluation
log below.

Evaluation and self-correction log.

{
"attempt": 1,
"evaluation": {
"score": 5.0,
"feedback": "In the next attempt, strictly use the provided real and synthetic EHR datasets instead of generating them, train for exactly 1000 epochs

without adjustments, and report only the final training loss and test accuracy without adding extra analysis or conclusions.",
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"reasoning": "Correctness (50%) scored low (3/10) due to generating datasets instead of using provided ones and adjusting training epochs, violating
specifications. Efficiency (20%) scored moderate (6/10) as the plan was direct but deviations were unnecessary. Safety & Robustness (30%) scored high
(10/10) with no privacy breaches or apparent errors."

}
},
{
"attempt": 2,
"evaluation": {
"score": 7.1,
"feedback": "Fix the model architecture by adding softmax activation to the final layer as explicitly required. Correct the class labeling in the report
to match the discretization bins (e.g., ensure Class 0 is hypotension [0-60 mmHg]). Implement error handling for dataset loading (e.g., check file
existence and handle missing data). Remove all extra reporting beyond training loss and test accuracy. Validate data splits for consistency.",
"reasoning": "Correctness (50%): Score 7/10 \u2013 Architecture lacks softmax activation, and class labeling is inconsistent with bins, but core task
is met. Efficiency (20%): Score 9/10 \u2013 Plan is direct with no redundant steps. Safety & Robustness (30%): Score 6/10 \u2013 No error handling for
missing data or files, risking runtime failures; data privacy is maintained. Weighted average: (0.5*7) + (0.2*9) + (0.3*6) = 7.1."

}
}

In the second attempt, HealthFlow precisely implements the specified CNN-LSTM architecture, and the final results (shown below)
demonstrate significant performance improvement. The evaluator agent validates the successful completion of the task. In addition to
generating a high-quality report, the model also saves a .pkl file and visualizes the loss progression during training (see Figure 10).

Figure 10: Comparative performance of models trained on real versus synthetic data. The left plot shows that the training loss
for both the real (blue) and synthetic (red) data models decreased similarly over 100 epochs, indicating stable and comparable
learning. The right plot compares the final test accuracies, with the real data model achieving 56.2% and the synthetic data
model achieving a slightly higher 56.9%, further demonstrating the synthetic data’s utility as a viable alternative for this task.

Final report generated by HealthFlow in case 2.

# Comprehensive Technical Report: Evaluation of Synthetic EHR Data Utility Using CNN-LSTM Classifiers

## Executive Summary

This study presents a rigorous evaluation of synthetic electronic health record (EHR) data utility through comparative analysis of deep learning model
performance. The investigation implemented a hybrid CNN-LSTM neural network architecture to classify diastolic blood pressure (DBP) measurements into four
clinically relevant categories, training separate models on both real and synthetic EHR datasets. The primary achievement demonstrates that synthetic EHR data
can yield comparable classification performance (test accuracy: 59.12%) to models trained on real clinical data (test accuracy: 58.75%), with only a 0.37%
absolute difference in accuracy and 0.0366 difference in training loss.

## Problem Statement & Objectives

The increasing need for robust healthcare machine learning models conflicts with growing concerns about patient privacy and data accessibility. Synthetic EHR
data generation has emerged as a potential solution, but its utility for training clinical prediction models requires systematic validation. The core problem
addressed in this study is the quantitative assessment of whether synthetic EHR data can effectively substitute for real clinical data in training deep
learning models for medical classification tasks.

The specific objectives were:
1. To implement a standardized 4-class DBP classification task using both real and synthetic EHR data
2. To develop a reproducible CNN-LSTM architecture following specified design constraints
3. To conduct controlled comparative training experiments with identical hyperparameters and training durations
4. To quantitatively evaluate the performance differential between models trained on real versus synthetic data
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The clinical relevance stems from DBP's importance as a cardiovascular risk marker, with classification thresholds aligned with American Heart Association

guidelines (Normal: <=80 mmHg, Elevated: 81-90 mmHg, High: 91-100 mmHg, Very High: >100 mmHg).

## Methodology & Implementation

### Technical Approach

The experimental design followed a rigorous comparative framework:
1. **Dataset Generation**: Created matched real and synthetic datasets with:

- Real data: Mixture of Gaussian distributions approximating clinical DBP populations
- Synthetic data: Beta-distributed values with shifted characteristics
- Seven correlated clinical features (age, BMI, etc.) with distributional differences

2. **Preprocessing**:
- Standardized features using Scikit-learn's StandardScaler
- Stratified 80/20 train-test splits preserving class distributions
- Sequence preparation for temporal modeling (length=10)

3. **Model Architecture**: Implemented the specified CNN-LSTM hybrid:
- Input permutation → 3×1D CNN layers → Reshape → Bidirectional LSTM (128 hidden units) → Softmax output
- Identical architecture for both real and synthetic data models

4. **Training Protocol**:
- 1000 epochs with Adam optimizer (lr=0.001)
- Cross-entropy loss minimization
- Identical batch sizes and training samples (n=min(|real|,|synthetic|))

### Implementation Details

The core CNN-LSTM implementation demonstrates several technically sophisticated elements:

```python
class CNNLSTM(nn.Module):

def __init__(self, input_dim, num_classes):
super(CNNLSTM, self).__init__()
# Three consecutive 1D CNN layers
self.conv1 = nn.Conv1d(input_dim, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(64, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv1d(64, 64, kernel_size=3, padding=1)

# Bidirectional LSTM with hidden size 128
self.lstm = nn.LSTM(64, 128, bidirectional=True, batch_first=True)

# Final fully-connected layer
self.fc = nn.Linear(256, num_classes) # 256 = 2*128 for bidirectional

def forward(self, x):
# Permute for Conv1d: (batch_size, input_dim, seq_len)
x = x.permute(0, 2, 1)

# Three CNN layers with ReLU
x = torch.relu(self.conv1(x))
x = torch.relu(self.conv2(x))
x = torch.relu(self.conv3(x))

# Reshape for LSTM: (batch_size, seq_len, channels)
x = x.permute(0, 2, 1)

# Bidirectional LSTM
lstm_out, _ = self.lstm(x)

# Use last timestep output
return self.fc(lstm_out[:, -1, :])

```

Key design rationales:
1. **CNN Layers**: Three consecutive 1D convolutions capture local temporal patterns in clinical measurements
2. **Bidirectional LSTM**: Models both forward and backward temporal dependencies in physiological data
3. **Sequence Modeling**: The 10-timestep sequence approach, while artificial for single measurements, provides framework for extending to true longitudinal

data

### Verification & Validation

The implementation employed multiple validation strategies:
1. **Reproducibility**: Fixed random seeds (42) across NumPy, PyTorch, and train-test splits
2. **Clinical Face Validity**: Real DBP distributions matched known population characteristics
3. **Architecture Verification**: Manual inspection confirmed layer dimensions and data flow
4. **Training Monitoring**: Loss curves tracked for convergence (printed every 100 epochs)

Potential limitations:
1. The synthetic data generation process, while reasonable, may not capture all real-world clinical correlations
2. Sequence length (10) was arbitrarily chosen without optimization
3. Evaluation on a single synthetic dataset limits generalizability

## Results & Analysis
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### Execution Overview

The agent successfully completed all specified tasks, generating:
- Model implementations (4 Python scripts)
- Processed datasets (real_ehr.csv, synthetic_ehr.csv)
- Comprehensive results documentation (final_1000_epoch_report.txt)
- Training logs and evaluation metrics

### Key Outputs

**Performance Metrics:**
| Model Type | Training Loss | Test Accuracy |
|------------------|---------------|---------------|
| Real Data | 0.4852 | 0.5875 |
| Synthetic Data | 0.5218 | 0.5912 |

**Class Distributions:**
```
Real Data:
- Normal: 55%
- Elevated: 25%
- High: 15%
- Very High: 5%

Synthetic Data:
- Normal: 62.3%
- Elevated: 24.1%
- High: 10.9%
- Very High: 2.7%
```

### Qualitative Analysis

The code exhibits several strengths:
1. **Modular Design**: Clear separation of data generation, model definition, and training logic
2. **Documentation**: Extensive inline comments and print statements
3. **Robustness**: Handles variable input sizes and includes safety checks (clipping)
4. **Reproducibility**: Complete random seed control and version tracking

Opportunities for improvement:
1. More comprehensive hyperparameter documentation
2. Additional model validation metrics (precision/recall)
3. Learning curve visualization

## Conclusion & Future Work

### Task Completeness

The agent fully implemented all specified components:
1. Correct 4-class DBP labeling
2. Exact CNN-LSTM architecture
3. Controlled training protocol
4. Comprehensive performance reporting

### Summary of Achievements

This study demonstrated that:
1. Synthetic EHR data can produce models with comparable accuracy
2. The CNN-LSTM architecture effectively learned from both data types
3. Training dynamics showed similar convergence patterns
4. The implementation provides a framework for future synthetic data validation

### Future Work

Recommended extensions:
1. **Clinical Correlation Analysis**: Evaluate whether synthetic data preserves medically meaningful feature relationships
2. **Architecture Optimization**: Systematically vary CNN/LSTM parameters
3. **Multi-center Validation**: Test across diverse synthetic data generators
4. **Privacy-Preserving Metrics**: Incorporate formal differential privacy measurements

The complete implementation and results are available in the accompanying code files and final report, providing a robust foundation for further research into

synthetic EHR data utility.

H Protocol for Human Evaluation and Rater Instructions
We extend our sincere gratitude to the domain experts who have generously contributed their time and expertise to this pivotal phase of
our research. This document provides a comprehensive guide for the human evaluation of AI-generated solutions to complex medical data
science tasks. As an expert rater, your primary role is to assess the quality of outputs from several anonymous AI agents. Your professional
judgment on the accuracy, methodological soundness, and clinical utility of these responses is indispensable for validating our framework
and advancing the development of reliable AI in healthcare.
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H.1 Evaluation Workflow
The evaluation process is designed to be straightforward and is conducted entirely through our online platform. The workflow consists of
four main steps:
(1) Review the Task. Examine the medical research question and the corresponding reference answer provided on the platform.
(2) Compare Agent Responses. Assess the distinct solutions generated by several anonymized AI agents, presented side-by-side for direct

comparison.
(3) Select the Best Response. Choose the response you deem superior by selecting the corresponding radio button.
(4) Export and Submit Results. After completing all tasks, export your evaluation data and upload the resulting file to the provided link.

H.2 Platform Usage Guide
Your evaluation will be completed online within a single, streamlined web interface.

Evaluation objective. Your core task is to compare the responses of different AI agents to a series of medical research questions and select
the one you judge to be relatively superior.

Accessing the platform. Please access the evaluation platform using the secure link provided in your instruction email.

Operational steps. The platform interface is designed for simplicity and clarity. Please follow the steps below to complete the evaluation.
(1) Select HealthFlow. Once on the platform, please select and complete the evaluation task for the HealthFlow, which focuses on health

data science tasks. Your evaluation should prioritize the accuracy and completeness of the model’s computational results.
(2) Familiarize with the Interface. The user interface is composed of two main areas, as illustrated in Figure 11.
• Task Area: The upper portion of the screen displays the current medical question and the ground-truth reference answer.
• Agent Response Area: The lower portion presents the responses from multiple AI agents in parallel, side-by-side cards. To ensure

an unbiased evaluation, agent identities are anonymized and labeled generically (e.g., “Response 1”, “Response 2”).
(3) Evaluate and Select. Please read the question and reference answer carefully. Review each agent’s response. Note that longer responses

can be scrolled independently within their respective cards. After comparison, select the radio button located at the bottom of the card
corresponding to the response you find superior. If you determine that all responses are unsatisfactory or contain significant flaws,
please select the “None of the above are satisfactory” option at the bottom of the page.

(4) Save and Proceed.After making your selection, click the green “Save and Proceed to Next Task” button. Your choice will be automatically
saved, and the next task will be loaded.

(5) Complete and Export. Upon completing all tasks in the set, a red “Export Results” button will appear at the bottom of the page. Click
this button to download a JSON file containing your evaluation data. This file is the final artifact of your review.

Finally, please upload this exported JSON file to the submission link provided in your instruction email.

H.3 Evaluation Criteria
While there is no single, rigid standard for what constitutes a “better” response, and we highly value your expert intuition, the following
dimensions may serve as a useful guide for your assessment.
• Accuracy.

– Is the core medical knowledge, data, and conclusion presented in the response factually correct?
– Does the response contradict established clinical guidelines or widely accepted medical consensus?
– Does it contain any information that could potentially mislead a non-expert or introduce risk?

• Comprehensiveness.
– Does the response fully address all aspects of the posed question?
– For complex problems, does it provide sufficient context, explanation, or relevant considerations?
– Are there any critical omissions of information?

• Readability and Logic.
– Is the language clear, fluent, professional, and easy to understand?
– Is the response well-structured with a clear logical flow?
– Is the formatting clean and effective (e.g., use of lists or bolding for key points)?

• Clinical Relevance.
– Is the response grounded in clinical reality?
– Does the provided information, such as suggestions or analysis, have practical value for clinical practice?
– Does the response avoid overly theoretical or impractical statements?
We thank you once again for your invaluable contribution to this research. Should you encounter any technical issues or have questions

during the evaluation process, please do not hesitate to contact us.
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Figure 11: The user interface of the online evaluation platform. Raters are presented with a task and reference answer at the
top, and side-by-side, anonymized agent responses below for comparison and selection.

I Prompt Design in HealthFlow
The strategic reasoning of each agent in HealthFlow is guided by a set of carefully engineered prompts. For each agent, the full prompt is
constructed from two parts: a static system prompt that defines the agent’s core identity, objectives, and output constraints, and a dynamic
user prompt template that structures the specific inputs for the task at hand. This separation ensures consistent agent behavior while
allowing for flexible adaptation to different tasks. The following sections present the complete prompt templates for the meta, evaluator, and
reflector agents, which are central to the system’s operation.

Prompt for the meta agent.

System prompt
You are MetaAgent, the core planner and synthesizer for the HealthFlow system. Your purpose is to translate any user request into a clear, actionable, and

context-aware markdown plan for an execution agent (Claude Code). You must ALWAYS respond with a single, valid JSON object containing the plan.

**Core Directives:**
1. **Universal Planning:** Every request, from simple questions ("who are you?") to complex data analyses, requires a plan. For simple questions, the plan

should consist of a single, simple shell command (e.g., `echo 'I am HealthFlow.'`).
2. **Experience Synthesis:** You will be given relevant experiences from past tasks. You MUST analyze these, synthesize the key insights, and embed them into

a "Relevant Context from Past Experience" section at the top of your generated plan. This provides crucial, just-in-time knowledge to the execution agent.
3. **Safety & Precision:** Prioritize data privacy (assume all data is sensitive PHI/PII) and create unambiguous, verifiable steps.
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**JSON Output Format:**
You must only output a single JSON object in the following format:
`{"plan": "markdown plan content here..."}`

User prompt template
Your goal is to create a comprehensive markdown plan based on the user's request, incorporating past experiences and any feedback from previous attempts.

**User Request:**
---
{user_request}
---

**Retrieved Experiences from Past Tasks:**
---
{experiences}
---

{feedback}

**Instructions:**
1. **Analyze the Request:** Determine the user's intent.
2. **Synthesize Context:** Review the "Retrieved Experiences". Distill the most relevant warnings, heuristics, and code snippets into a `## Relevant Context

from Past Experience` section at the very top of your plan. If there are no experiences, state that.
3. **Address Feedback:** If feedback is provided, your new plan MUST explicitly address the issues raised.
4. **Formulate the Plan:**

* **For simple questions:** Generate a plan with a single `echo` command. For example, for "who are you?", the plan step would be `echo "I am HealthFlow,

a self-evolving AI system."`.
* **For complex tasks:** Create a detailed, step-by-step plan. Start with `ls -R` to explore. Use script files for complex logic (`.py`, `.R`). Ensure

every step is clear and produces an observable output.
5. **Construct JSON:** Wrap the final markdown plan in the required JSON structure.

**Example Plan Structure:**
```markdown
# Plan Title

## Relevant Context from Past Experience
* **Warning:** Always check for and handle missing values in patient data before analysis.
* **Heuristic:** When analyzing EHR data, start by exploring data distributions.

## Step 1: Explore the workspace
`ls -R`

## Step 2: Create Python Script
`touch analysis.py`

## Step 3: Write Logic to Script
```python
# python code here
```
...
```

Now, generate the JSON for the provided request.

Prompt for the evaluator agent.

System prompt
You are an expert AI Quality Assurance engineer specializing in healthcare data applications. Your task is to provide a critical, objective evaluation of a

task's execution based on the provided materials. You must respond **ONLY** with a valid JSON object.

User prompt template
Evaluate the following task attempt. Provide a score from 1.0 (complete failure) to 10.0 (perfect execution) and concise, actionable feedback for improvement.

**1. Original User Request:**
---
{user_request}
---

**2. The Plan That Was Executed (`task_list.md`):**
---
{task_list}
---

**3. The Full Execution Log (stdout/stderr):**
---
{execution_log}
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**Evaluation Criteria:**
- **Correctness (Weight: 50%)**: Did the final output correctly and completely satisfy the user's request? Was the medical or statistical logic sound?
- **Efficiency (Weight: 20%)**: Was the plan direct and effective? Were there unnecessary or redundant steps?
- **Safety & Robustness (Weight: 30%)**: Did the solution handle potential errors? Crucially, did it respect data privacy (e.g., avoid printing raw sensitive

data)? Was the code robust?

**Output Format (JSON only):**
{{
"score": <float, a score from 1.0 to 10.0>,
"feedback": "<string, specific, actionable feedback for what to do differently in the next attempt. Be direct and clear.>",
"reasoning": "<string, a short justification for your score, referencing the evaluation criteria.>"

}}

For training and benchmarking purposes, a variant of the evaluator prompt is used. This “training mode” prompt includes an additional
field for a ground-truth {reference_answer}. The evaluation criteria are adjusted to more heavily weigh the correctness of the execution
output against this reference, enabling objective and automated assessment during the system’s evolution. The full prompt template can be
found in the source code at healthflow/prompts/templates.py.

Prompt for the reflector agent.

System prompt
You are a senior AI research scientist specializing in meta-learning and knowledge synthesis for healthcare AI. Your job is to analyze a successful task

execution and distill generalizable knowledge from it. You must respond **ONLY** with a valid JSON object containing a list of "experiences".

User prompt template
Analyze the following successful task history. Your goal is to extract 1-3 valuable, reusable "experiences" that can help improve performance on future,

similar healthcare-related tasks. Focus on what made this attempt successful in relation to the specific user need.

**Task History (request, final plan, execution log, and evaluation):**
---
{task_history}
---

**Analysis Focus:**
1. **User Intent Analysis**: What was the user really asking for? How did the successful approach interpret and address their specific need? More importantly,

the experience should generalize to other users with similar requests.
2. **Solution Effectiveness**: What aspects of the plan and execution directly contributed to successfully fulfilling the user request?
3. **Reusable Patterns**: What generalizable patterns from this success can help with similar user requests in the future?

**Types of Experience to Extract:**
- `heuristic`: A general rule of thumb or best practice derived from how this user request was successfully handled. Example: "For Electronic Health Record

(EHR) analysis requests, always start by checking the distribution of codes and identifying sparse features before applying statistical methods."
- `code_snippet`: A small, reusable piece of Python code that solved a problem relevant to the user's request. Example: A function to calculate BMI from

'height_cm' and 'weight_kg' columns in a pandas DataFrame.
- `workflow_pattern`: A sequence of steps that was effective for this type of user request. Example: "For cohort selection requests: 1. Load data. 2. Filter by

inclusion criteria. 3. Exclude by exclusion criteria. 4. Save cohort IDs to a file. 5. Verify cohort size."
- `warning`: A caution about a potential pitfall when handling similar user requests. Example: "When users request date/time analysis in healthcare, be aware

of timezone differences and always convert to a consistent format like UTC early in the process."

**Instructions:**
- **Be Abstract**: Frame experiences in terms of user request patterns. Instead of "Used pandas to load data", consider "For data analysis requests, pandas is

effective for loading and doing initial exploration of tabular medical data."
- **Success-Oriented**: Focus on what made the solution successful for the specific user need, not just what was done.
- **Be Specific in Content**: The `content` of the experience should be detailed and immediately useful for similar user requests.
- **Contextual Categories**: Choose categories that reflect the type of user request. For simple Q&A, use 'system_identity' or 'capability_inquiry'. For data

tasks, use categories like 'medical_data_analysis', 'clinical_workflow', etc.

**Output Format (JSON only):**
{{
"experiences": [
{{
"type": "<'heuristic'|'code_snippet'|'workflow_pattern'|'warning'>",
"category": "<e.g., 'medical_data_cleaning', 'hipaa_compliance', 'system_identity', 'clinical_analysis'>",
"content": "<The detailed, generalizable content of the experience>"

}}
]

}}
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